共查询到20条相似文献,搜索用时 15 毫秒
1.
Valle Raidla Kalle Kirsimäe Rein Vaikmäe Argo Jõeleht Enn Karro Andres Marandi Lehte Savitskaja 《Chemical Geology》2009,258(3-4):219-231
The shallowly buried marginal part of the Cambrian–Vendian confined aquifer system of the Baltic Basin is characterised by fresh and low δ18O composition water, whereas the deeply settled parts of the aquifer are characterized by typical Na–Ca–Cl basinal brines. Spatial variation in water geochemistry and stable isotope composition suggests mixing origin of the diluted water of three end-members—glacial melt water of the Weichselian Ice Age (115 000–10 000 BP), Na–Ca–Cl composition basin brine and modern meteoric water. The mixing has occurred in two stages. First, the intrusion and mixing of isotopically depleted glacial waters with basinal brines occurred during the Pleistocene glacial periods when the subglacial melt-water with high hydraulic gradient penetrated into the aquifer. The second stage of mixing takes place nowadays by intrusion of meteoric waters. The freshened water at the northern margin of the basin has acquired a partial equilibrium with the weakly cemented rock matrix of the aquifer. 相似文献
2.
E. F. Letnikova F. A. Letnikov S. I. Shkol’nik T. Yu. Cherkashina L. Z. Reznitskii I. A. Vishnevskaya 《Doklady Earth Sciences》2016,466(1):42-46
Isotope–geochemical studies of Mn, P, and Ba ores were performed in order to establish the influence of submarine hydrotherms on the formation of Early Cambrian sedimentary rocks of the southern environs of the Siberian Platform. Based on study of the geochemical and isotope (εNd) characteristics of the shallow-water Mn and Ba ores and phosphorites of southern environs of the Siberian Platform with similar ages, two types of sedimentary basins of the different geodynamic origins were distinguished: intraplate oceanic and those of the active continental margin, for which the sources of ore materials differ by the proportions of the mantle and contaminated crustal matter. 相似文献
3.
4.
V. N. Podkovyrov A. V. Maslov A. B. Kuznetsov V. B. Ershova 《Stratigraphy and Geological Correlation》2017,25(1):1-20
The results of investigations of Upper Vendian?Lower Cambrian deposits in the northeastern part of the Baltic monocline specify views on the evolution of depositional environments of sedimentary successions constituting the basal part of the sedimentary cover in inner areas of the northwestern East European Platform. It is shown that the Late Vendian and initial Cambrian were characterized by the consecutive influx of relatively mature terrigenous detrital material that originated from both the weathering crust of the Baltic Shield and new sources. Its deposition was interrupted by notable, although likely asynchronous, hiatuses, which are registered at the base of the Upper Vendian Vasileostrovskaya and Voronkovo formations and Lower Cambrian Lomonosov Formation. In the Late Vendian, sedimentary material was transported from the Baltic Shield, while beginning from the initial Early Cambrian the additional contribution to the formation of the sedimentary cover of the Baltic monocline was provided by coarse-grained sedimentary material from the Timan margin of the Baltica as follows from U?Pb isotopic ages obtained for detrital zircons. At the same time, lithogeochemical parameters of fine-grained rocks experienced no substantial changes. 相似文献
5.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle. 相似文献
6.
Previously published and new data on secondary transformations of the globular and platy phyllosilicates of the glauconite–illite series from the Upper Proterozoic terrigenous rocks of the Olenek and Anabar uplifts (East Siberia), Srednii Peninsula (Murmansk coast), and Vendian–Cambrian boundary rocks of the Podolian Dniester area (Ukraine) are generalized for the first time. Plastic deformation, aluminization, chloritization, berthierinization, as well as replacement of phyllosilicates of different morphology by corrensite- chlorite and pyrite at different lithogenesis stages, are considered and lithological-mineralogical characteristics of the glauconite-bearing rocks are reported. The structural, crystal-chemical, genetic, and isotopegeochronological features of di- and trioctahedral phyllosilicates are discussed. 相似文献
7.
The Zarigan–Chahmir basin is placed in the southern part of a crustal domain known as the Central Iranian microcontinent, at the northwestern margin of Gondwana. This basin hosts abundant mineral deposits, particularly of the iron oxide–apatite (IOA), Fe–Mn exhalative, and Zn–Pb sedimentary-exhalative (SEDEX) types. The evolution of this basin is governed by the Proto-Tethys oceanic crust subduction beneath the Central Iranian microcontinent and by the resulting continental arc and back-arc. This evolution followed two major stages of rifting: (I) Stage I or syn-rift phase, related to intra-basin extension, is indicated by coarse-grained detrital sedimentary rocks and bimodal volcanism (basis of the Early Cambrian Volcano-Sedimentary Sequence; ECVSS), which filled half-graben systems. During this stage, tuff-hosted stratiform, exhalative Fe–Mn deposits along with Kiruna-type IOA deposits formed. The former deposits (e.g., Narigan) are related to early submarine rhyolithic volcanism of the rift-phase sequence, whereas the latter (e.g., Esfordi, Choghart, Chadormalu, Chahgaz) are connected to hydrothermal activity directly linked to the arc calk-alkaline magmatism. (II) Stage II or sag-phase involved the deposition of calcareous shales, siltstones and carbonates (upper part of the ECVSS). Sedimentation during this phase was controlled by basin subsidence and by the reactivation of the half-graben faults. SEDEX deposits are hosted within a carbonaceous, black siltstone unit of the sag-phase sequence, which was deposited during a period of rapid basin subsidence and under anoxic conditions. The location of synsedimentary faults and the prevalence of poorly-oxygenated bottom water conditions were key factors controlling SEDEX mineralization processes in the basin. A high geothermal gradient caused by maximum syn-rift magmatism and sub-crustal lithospheric thinning, affecting primarily the center, western and northwestern basin, may have driven a basin-scale hydrothermal fluid circulation. This finding explains the occurrence of larger, well correlable SEDEX deposits in the northwestern and central parts of the Zarigan–Chahmir basin. 相似文献
8.
E. Yu. Rytsk E. B. Salnikova V. A. Glebovitsky S. D. Velikoslavinsky I. A. Alekseev A. M. Fedoseenko Yu. V. Plotkina 《Doklady Earth Sciences》2017,474(1):569-573
This work presents the results of U–Pb isotope dating of zircons from granodiorites and plagiogranites of the Tallainskii gabbro–granodiorite–plagiogranite complex of the Karalon–Mamakan zone of the Baikal–Muya belt, ascribed to the Tallainskii pluton. The age datings obtained for granodiorite of the Eleninskii massif (605 ± 6 Ma) and plagiogranite of the Ust-Berezovo massif (609 ± 6 Ma) are in close agreement within the limits of error. Taking into account previously published data, the emplacement of the Tallainskii complex occurred within the age interval of 615–603 Ma in connection with postcollision extension. The “island arc” geochemical characteristics of granodiorites and plagiogranites can be explained by magmatic differentiation and (or) participation in the formation of a melt source enriched in the suprasubduction component involved in petrogenesis during the preceding Neoproterozoic period. 相似文献
9.
U–Pb dating and oxygen and Lu–Hf isotope analyses are applied to ~ 400 detrital zircon grains from the Neoproterozoic–Cambrian Kahar, Bayandor and Zaigun sandstones. The results reveal the evolutionary history of the Central Iranian continental crust in the northern margin of Gondwana during the Neoproterozoic–Cambrian. The U–Pb dating produces major peaks of crystallization ages at 0.5–0.7 Ga and minor peaks around the Tonian, Paleoproterozoic and Neoarchean. The zircon population in the Zaigun sandstone is dominated by long-transported grains and exhibits slightly different zircon distribution patterns than those from the older Kahar and Bayandor units. The zircon population ages and Hf isotopes of the Zaigun sample are very similar to the Neoproterozoic–Early Palaeozoic siliciclastic units in the Arabian Nubian shield (ANS) and Turkey, which suggests the late to post–Pan-African unroofing of the Afro–Arabia realm as the main process for detritus accumulation in Central Iran during the early Palaeozoic. A significant proportion of the Tonian-aged zircons (~ 64%) in the Kahar and Bayandor samples show positive εHf(t) values, whereas those with late Cryogenian–Ediacaran ages have high δ18O and variable εHf(t) values (~− 30‰ to + 17‰), suggesting that the crustal evolution of provenance of the Tonian-aged zircons commenced in an island arc setting and continued in an active continental margin. All the samples contain pre-Neoproterozoic zircons that are ca 1.9–2.3 Ga or 2.5–3.2 Ga, which are much older than the known Neoproterozoic igneous rocks in Iran and are more consistent with pre-Neoproterozoic igneous-metamorphic rocks in the eastern ANS and northern Africa. These ages support the eastern sector of the Afro–Arabia margin as a provenance for the detrital zircons in the oldest sedimentary sequences of Iran during the late Neoproterozoic–Cambrian. The Hf model ages of zircons with mantle-like δ18O values suggest that a significant amount of continental crust in the provenance of the detrital zircons was generated at around 1.0–2.0 and 3.0–3.5 Ga, likely by mantle-derived mafic magmas, and subsequently reworked during crustal differentiation into younger, more felsic crust with varying crustal residence times. 相似文献
10.
Contention surrounds the Ediacaran–Cambrian geodynamic evolution of the palaeo-Pacific margin of Gondwana as it underwent a transition from passive to active margin tectonics. In Australia, disagreement stems from conflicting geodynamic models for the Delamerian Orogen, which differ in the polarity of subduction and the state of the subduction hinge (i.e., stationary or retreating). This study tests competing models of the Delamerian Orogen through reconstructing Ediacaran–Cambrian basin evolution in the Koonenberry Belt, Australia. This was done through characterising the mineral and U–Pb detrital zircon age provenance of sediments deposited during postulated passive and active margin stages. Based on these data, we present a new basin evolution model for the Koonenberry Belt, which also impacts palaeogeographic models of Australia and East Gondwana. Our basin evolution and palaeogeographic model is composed of four main stages, namely: (i) Ediacaran passive margin stage with sediments derived from the Musgrave Province; (ii) Middle Cambrian (517–500 Ma) convergent margin stage with sediments derived from collisional orogens in central Gondwana (i.e., the Maud Belt of East Antarctica) and deposited in a backarc setting; (iii) crustal shortening during the c. 500 Ma Delamerian Orogeny, and; (iv) Middle to Late Cambrian–Ordovician stage with sediments sourced from the local basement and 520–490 Ma igneous rocks and deposited into post-orogenic pull-apart basins. Based on this new basin evolution model we propose a new geodynamic model for the Cambrian evolution of the Koonenberry Belt where: (i) the initiation of a west-dipping subduction zone at c. 517 Ma was associated with incipient calc-alkaline magmatism (Mount Wright Volcanics) and deposition of the Teltawongee and Ponto groups; (ii) immediate east-directed retreat of the subduction zone positioned the Koonenberry Belt in a backarc basin setting (517 to 500 Ma), which became a depocentre for continued deposition of the Teltawongee and Ponto groups; (iii) inversion of the backarc basin during the c. 500 Delamerian Orogeny was driven by increased upper and low plate coupling caused by the arrival of a lower plate asperity to the subduction hinge, and; (iv) subduction of the asperity resulted in renewed rollback and upper plate extension, leading to the development of small, post-orogenic pull-apart basins that received locally derived detritus. 相似文献
11.
We generalize results of geological, geochronological, geochemical, and isotope-geochemical studies of the Vendian–Early Cambrian island-arc plagiogranitoid magmatism in the Altai–Sayan folded area and in the Lake Zone of western Mongolia. Based on these data, we analyzed the scales of development of plagiogranitoid magmatism, studied the petrologic composition and isotope characteristics of granitoids, and established the main sources of plagiogranitoid-generating melts and the leading mechanisms of formation of Early Caledonian juvenile crust. 相似文献
12.
The South Oman Salt Basin (SOSB) is host to the world’s oldest known commercial deposits. Most of the South Oman oils have been proven to be associated with the source rocks of the Neoproterozoic to Cambrian Huqf Supergroup, but the assignment of oils to specific Huqf intervals or facies has been hampered by the geochemical similarity of the organic matter across the entire Huqf sequence, possibly as a consequence of limited change in the local palaeoenvironment and biota over the time of its deposition. This study was conducted to establish improved correlations between organic-rich rock units and reservoir fluids in the SOSB through detailed molecular and isotopic analysis of the Huqf Supergroup, with special emphasis directed towards understanding the Ara carbonate stringer play.Unusual biomarkers, tentatively identified as A-norsteranes, show distinctive patterns among carbonate stringer oils and rocks different from those observed in Nafun sediments and Ara rocks from the Athel basin. These putative A-norsteranes form the basis for new oil-source correlations in the SOSB and provide for the first time geochemical evidence of a self-charging mechanism for the carbonate stringer play. The paucity of markers specific to the Nafun Group (Shuram, Buah and Masirah Bay formations) confounds attempts to quantify their respective contributions to Huqf oil accumulations. Nafun inputs can only be determined on the basis of subtle differences between Nafun and Ara biomarker ratios. The most useful geochemical characteristics delineating Nafun Group organic matter from Ara Group intra-salt source rocks included: low relative abundance of mid-chain monomethyl alkanes (X-compounds); low relative abundance of gammacerane, 28,30-dinorhopane, 25,28,30-trinorhopane and 2-methylhopanes; low C22T/C21T and high C23T/C24T cheilanthanes ratio values. Based on these parameters, molecular evidence for major contributions of liquid hydrocarbons from Nafun Group sediments (Shuram, Buah and Masirah Bay formations) is lacking. Our results suggest that the majority of SOSB hydrocarbon accumulations originate from within the Ara group, either from the carbonate stringers or from the package of sediments that comprises the Thuleilat, Athel Silicilyte and U shale formations. Subtle aspects of the composition of some carbonate stringer and post-salt Huqf oils could suggest some degree of sourcing from the Nafun rocks but stronger evidence is needed to confirm this. 相似文献
13.
In this paper we present new data for the Tianquan (TQ) and Dabure (DB) ocean islands in the western segment of the Longmuco–Shuanghu–Lancangjiang suture zone, northern Tibet, including the results of major and trace element analyses, zircon U–Pb dating, and Hf isotope analyses. Our aim was to assess the genesis of these ocean islands and to consider the implications for the tectonic evolution of the region as a whole. Both TQ and DB retain an ocean-island-type double-layered structure comprising a volcanic basement (basalt and andesite) and an oceanic sedimentary cover sequence (conglomerate, limestone, and chert). The basalts and andesites in the TQ and DB are enriched in light rare earth elements and high field strength elements (Nb, Ta, Zr, Hf, and Ti), yielding chondrite-normalized REE patterns and primitive-mantle-normalized trace element patterns that are similar to those of ocean island basalts. Given the small and generally positive εHf(t) values of the TQ andesites (+ 4.25 to + 6.22) and DB andesites (− 0.59 to + 1.97, mostly > 0), we conclude that the basalts were derived from the partial melting of garnet peridotite in the mantle and that the andesites were formed by fractional crystallization of the mafic parent magma derived from the garnet peridotite mantle. The ascending magmas underwent varying degrees of fractional crystallization but were not contaminated by crustal material. These features indicate that both TQ and DB are typical ocean islands that formed in an ocean basin. Geochemical analyses of cherts from TQ and DB show that they contain terrigenous material, indicating the proximity of a continental margin. The andesites of TQ contain zircons that yield two U–Pb ages of 251 Ma. Given that ages of 246, 247, and 254 Ma had been reported previously, we conclude that TQ formed during the late Permian–Early Triassic. The andesites of DB contain zircons that yield U–Pb ages of 242 and 246 Ma. Taking into account the youngest age of 244 Ma from the DB basalt, we conclude that DB formed during the Middle Triassic. These data, combined with the geological history of the region, indicate that the development of the Longmuco–Shuanghu–Lancangjiang Paleo-Tethys Ocean continued after the early Permian and that the closure of this ocean was diachronous from east to west. The eastern segment of the ocean closed during the Early Triassic; however, the western segment remained at least partially open until the Middle Triassic, although the ocean was relatively small at this time. The ocean finally closed in the Late Triassic. 相似文献
14.
Shortage of water resources in arid and semi-arid areas causes water supply to be one of the most important subjects and major concerns within NGO and governments’ policies in recent years. The Shahrekord Plain aquifer system is located in a semi-arid area and acts as a key source of water supply. Groundwater management in this area is thus very important. Although change in the climatological factors is not possible, long-term fluctuation studies can help in managing the available water resources to overcome from drought or decrease its negative impact. The hydrodynamic study of the aquifer system coupled with the drought indices in each region can be useful in making decisions related to the hydro-ecosystem management of that region. In this article, hydrodynamics of the aquifer system of the Shahrekord Plain coupled with the ratio of P/PET as a drought index, are assessed on the long term. In Shahrekord Plain aquifer, there is a short-term seasonal fluctuation, which is increased by overexploitation during the dry season, when water is needed for irrigation. The hydrodynamic behavior of the plain aquifer on the long term is changing. This fluctuation at first is a function of time. Secondly, it is spatially dependent. Groundwater behavior is directly sensitive to the variation of drought index, both seasonally and on the long term. 相似文献
15.
Amor Ben Moussa Sarra Bel Haj Salem Kamel Zouari Vincent Marc Fayçal Jlassi 《Environmental Earth Sciences》2011,62(6):1287-1300
Detailed hydrogeochemical and isotopic data of groundwaters from the Hammamet–Nabeul unconfined aquifer are used to provide
a better understanding of the natural and anthropogenic processes that control the groundwater mineralization as well as the
sources of different groundwater bodies. It has been demonstrated that groundwaters, which show Na–Cl and Ca–SO4–Cl water facies, are mainly influenced by the dissolution of evaporates, the dedolomitization and the cation-exchange process;
and supplementary by anthropogenic process in relation with return flow of irrigation waters. The isotopic signatures permit
to classify the studied groundwaters into two different groups. Non-evaporated groundwaters that are characterized by depleted
δ
18O and δ
2H contents highlighting the importance of modern recharge at higher altitude. Evaporated groundwaters with enriched contents
reflecting the significance infiltration of return flow irrigation waters. Tritium data in the studied groundwaters lend support
to the existence of pre-1950 and post-1960 recharge. Carbon-14 activities in shallow wells that provide evidence to the large
contamination by organic 14C corroborate the recent origin of the groundwaters in the study area. 相似文献
16.
A review of the stratigraphy of the Galve sub-basin (western Maestrazgo Basin, eastern Spain) around the Jurassic–Cretaceous transition is presented here, based on new data acquired after extensive geological mapping and logging complemented with facies analysis, new biostratigraphic data and a revision of the published information available. The results obtained are relevant for a more detailed understanding of the tecto-sedimentary evolution of the studied basin during the transition between two stages of rift evolution (i.e., syn-rift sequences 1 and 2). In addition, new information on the age and setting of numerous dinosaur fossil- and track-sites found across the Galve sub-basin and in the northern part of the nearby Penyagolosa sub-basin is provided here. Two new lithostratigraphic units are defined and characterized, the Aguilar del Alfambra and the Galve formations. The previous stratigraphic framework considered only two lithostratigraphic units (the Villar del Arzobispo and El Castellar formations) bounded by a single regional unconformity, and this resulted in significant misinterpretations. The whitish limestones, red lutites and cross-bedded sandstones of the Aguilar del Alfambra Formation were deposited in transitional environments, ranging from coastal lutitic plains to restricted lagoons. Of particular interest are the laminated micritic-peloidal limestones with abundant fenestral porosity (supratidal ponds to intertidal flats), which preserve common dinosaur footprints. This unit is bounded by widespread unconformities and is of very variable thickness (0–450 m), controlled by extensional tectonics operating at the climax of syn-rift sequence 1 during the latest Tithonian–middle Berriasian. The overlying Galve Formation is of variable thickness (from 0 to 100 m) and is also bounded by regional unconformities described in detail here. It consists of red lutites with cross-bedded and tabular-burrowed sandstones representing channel and overflow deposits in an alluvial floodplain. The sauropod dinosaur Aragosaurus ischiaticus found in this unit has a controversial age assignment. The age of the Galve Formation is poorly constrained from late Berriasian to Hauterivian, but new biostratigraphic data presented here, combined with the correlation with the nearby Penyagolosa and Salzedella sub-basins, suggest a possible equivalence to the upper Berriasian–lower Valanginian sequence deposited during the initial stage of syn-rift sequence 2. 相似文献
17.
The Tarim Basin is the only petroliferous basin enriched with marine oil and gas in China. It is presently also the deepest basin for petroleum exploration and development in the world. There are two main sets of marine Source Rocks (SRs) in the Tarim Basin, namely the high over-mature Cambrian–Lower Ordovician (∈–O1) and the moderately mature Middle–Upper Ordovician (O2–3). The characteristic biomarkers of SRs and oils indicate that the main origin of the marine petroleum is a mixed source of ∈–O1 and O2–3 SRs. With increasing burial, the hydrocarbon contribution of the ∈–O1 SRs gradually increases. Accompanied by the superposition of multi-stage hydrocarbon-generation of the SRs and various secondary alteration processes, the emergence and abnormal enrichment of terpenoids, thiophene and trimethylaryl isoprenoid in deep reservoirs indicate a complex genesis of various deep oils and gases. Through the analysis of the biofacies and sedimentary environments of the ∈–O1 and O2–3 SRs, it is shown that the lower Paleozoic high-quality SRs in the Tarim Basin were mainly deposited in a passive continental margin and the gentle slope of the platform, deep-water shelf and slope facies, which has exhibited a good response to the local tectonic-sedimentary environment. The slope of the paleo-uplift is the mutual area for the development of carbonate reservoirs and the deposition of marine SRs, which would be favorable for the accumulation of petroleum. Due to the characteristics of low ground temperature, the latest rapid and deep burial does not cause massive oil-cracking in the paleo-uplift and slope area. Therefore, it is speculated that the marine reservoirs in the slope of the Tabei Uplift are likely to be a favorable area for deep petroleum exploration, while the oil-cracking gas would be a potential reserve around the west margin of the Manjiaer Depression. Hydrocarbons were generated from various unit SRs, mainly migrating along the lateral unconformities or reservoirs and the vertical faults. They eventually brought up three major types of exploration fields: middle and lower Cambrian salt-related assemblages, dolomite inner reservoirs and Middle and Lower Ordovician oil-bearing karst, which would become the most favorable target of marine ultra-deep exploration in the Tarim Basin. 相似文献
18.
Anderson José Maraschin Ana Maria Mizusaki Horst Zwingmann André Weissheimer de Borba Gesiane Fraga Sbrissa 《Journal of South American Earth Sciences》2010,29(2):400-411
Several analytical studies performed on alluvial-eolian sandstones of the Early Paleozoic Guaritas Allogroup (Camaquã Basin, southern Brazil) indicate illite to be abundant, showing different morphologies as authigenic grain rims and pore-bridging filaments. Authigenic illite separates of variable grain sizes from distinct stratigraphic intervals of the Guaritas Allogroup yielded 40K–40Ar ages from 521.7 ± 10.3 to 473.7 ± 9.4 Ma. These ages, interpreted to record the timing of illite authigenesis, are coincident with the age of emplacement of the Rodeio Velho andesites (470 ± 19 Ma). Moreover, field structures suggest interaction between hot, andesite lava flows and wet, poorly consolidated sediments of the Pedra Pintada Alloformation (lower strata of the Guaritas Allogroup). This set of data indicates that the Rodeio Velho volcanism could have been responsible for a widespread remobilization of interstitial fluids and consequent authigenic illite precipitation in the sandstones of the Guaritas Allogroup. 相似文献
19.
Kosakowski Paweł Kotarba Maciej J. Piestrzyński Adam Shogenova Alla Więcław Dariusz 《International Journal of Earth Sciences》2017,106(2):743-761
International Journal of Earth Sciences - We present geochemical characteristics of the Lower Palaeozoic shales deposited in the Baltic Basin and Podlasie Depression. In the study area, this strata... 相似文献
20.
The Tarim Basin is located in northwestern China and is the biggest basin in China with huge oil and gas resources. Especially the Lower to Middle Cambrian and Middle to Upper Ordovician possess the major marine source rocks in the Tarim Basin and have large shale gas resource potential. The Cambrian–Ordovician shales were mainly deposited in basin–slope facies with thicknesses between 30–180 m. For shales buried shallower than 4500 m, there is high organic matter abundance with TOC (total organic carbon) mainly between 1.0% and 6.0%, favorable organic matter of Type I and Type II, and high thermal maturity with RoE as 1.3%–2.75%. The mineral composition of these Cambrian–Ordovician shale samples is mainly quartz and carbonate minerals while the clay minerals content is mostly lower than 30%, because these samples include siliceous and calcareous shale and marlstone. The Cambrian and Ordovician shales are compacted with mean porosity of 4% and 3%, permeability of 0.0003×10?3–0.09×10?3 μm2 and 0.0002×10?3–0.11×10?3 μm2, and density of 2.30 g/m3 and 2.55 g/m3, respectively. The pores in the shale samples show good connectivity and are mainly mesopore in size. Different genetic types of pores can be observed such as intercrystal, intergranular, dissolved, organic matter and shrinkage joint. The reservoir bed properties are controlled by mineral composition and diagenesis. The maximum adsorption amount to methane of these shales is 1.15–7.36 cm3/g, with main affecting factors being organic matter abundance, porosity and thermal maturity. The accumulation characteristics of natural gas within these shales are jointly controlled by sedimentation, diagenesis, hydrocarbon generation conditions?, reservoir bed properties and the occurrence process of natural gas. The natural gas underwent short-distance migration and accumulation, in-place accumulation in the early stage, and adjustment and modification in the later stage. Finally, the Yulin (well Y1) and Tazhong (well T1) areas are identified as the targets for shale gas exploration in the Tarim Basin. 相似文献