首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen isotopic compositions of authigenic quartz cements in sandstones provide a monitor of the temperatures, compositions, and origins of pore-occluding fluids during diagenesis, but quartz overgrowths are too fine-grained to be amenable to conventional isotopic analysis. We have used a Cameca ims-4f ion microprobe to determine oxygen isotopic variations in authigenic and detrital quartz in four samples of the Ordovician St. Peter Sandstone from the Michigan Basin and Wisconsin Arch, midwestern USA. Ion microprobe isotopic analyses have been successfully accomplished with an internal precision of ±1‰ (1 σ) and a spatial resolution of 20–30 μm at low mass resolution using a high voltage offset technique. Repeated analyses of the quartz standard demonstrate a reproducibility of close to ±1‰ (1 sd) in good agreement with that expected from counting statistics. The four ion probe samples were chosen as representative of thirteen samples that were mechanically and chemically disaggregated, sieved, and analysed as a function of sieve size by conventional bulk-mineral techniques. Conventional and ion microprobe analyses are mutually consistent, supporting the accuracy of the ion microprobe analyses. Within-sample isotopic variations of up to 13%. and micro-scale isotopic variations of at least 4‰ over a distance of 100 μm have been measured within quartz overgrowths in a sandstone from the Wisconsin Arch. Overgrowths are uniformly higher in δ18O than detrital grains, and gradients of up to 25% exist across a few microns.

18O-enriched quartz overgrowths in sandstones from the Wisconsin Arch show complex CL zonation and reflect one of two possible processes: (1) low-temperature quartz precipitation during mixing of meteoric waters with upwelling basinal fluids; (2) higher temperature quartz precipitation during episodic gravity-driven upwelling of warm basinal fluids (of comparable isotopic composition to Michigan Basin fluids) from the Illinois Basin, related to evolution of Mississippi Valley type Pb---Zn ore-forming fluids. Quartz overgrowths in Michigan Basin sandstones, which derived their silica locally by pressure solution, are thought to have precipitated continuously over a range of temperatures from hot basinal fluids of restricted isotopic composition and circulation. Detrital quartz shows significant intea-grain and intergrain isotopic variation (5–13‰) but no significant inter-sample variation, consistent with a uniform source of granitoid and metamorphic quartz in space and time.  相似文献   


2.
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ18O between 9.8‰ and 16.7‰ (n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ18O = 29.3 ± 1.0‰ (1SD, n = 161).Given the similarity, on average, of δ18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement.Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ18O values of −10‰ to −5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.  相似文献   

3.
A phosphatic alteration rind is described comprising a leucophosphite crust above a phosphatised substrate of serpentinized peridotite from an exceptionally isolated location experiencing high rainfall conditions. The formation of the rind is intimately linked to the deposition and subsequent leaching of guano associated with the high concentration of seabirds that nest on the islands and its transformation into a ‘weathering rind’. The favoured pathway into the substrate appears to be along a pre-existing microfracture network, via the alteration of its carbonate infill into soluble apatite. This apatite is only retained within the protected environment of the microfracture network. Surrounding the network, there is evidence of the continued inward migration of the leachate into the surrounding peridotite resulting in its gradual phosphatisation in the form of a ‘halo’ around individual fractures. On the exposed rock surface, the consequence of the reaction between the guano leachate and the underlying substrate is its transformation into a ‘weathering rind’ composed principally of leucophosphite. It appears that the widespread formation of a phosphate crust is constrained by continual surface loss in a high energy, salt-rich maritime environment exposed to extensive overwash, wave attack and ultimately erosion.  相似文献   

4.
Mineralium Deposita - The massive sulfide deposits of the Kristineberg area, Sweden, occur within a 2- to 3-km-thick succession of felsic volcaniclastic rocks belonging to the Skellefte Group. The...  相似文献   

5.
Pleistocene permafrost had a major but generally unappreciated effect on the landscape of Wisconsin, second only to glaciation. Evidence for continuous permafrost during the last part of the Wisconsin Glaciation includes ice-wedge casts seen both in outcrop (generally in gravel pits) and as polygonal networks (on aerial photographs). Other important evidence includes fossil tundra organisms. Other features that are probably the result of permafrost in Wisconsin include talus cones, block streams, solifluction rubble at the base of most hillslopes, fluvial cobble gravel, gullies that are today inactive, lake-ice collapse trenches, and ice-walled-lake plains. Permafrost caused accelerated regional erosion of the landscape; most topographic features formed before the last permafrost melted have been highly modified or even destroyed, whereas those formed after are much better preserved. In addition, the presence of permafrost influenced many glacial processes and landforms. Permafrost was present until about 14000 yr BP in the southern part of the state to about 10000 yr BP in the northern part.  相似文献   

6.
Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type.  相似文献   

7.
The probable quality of water in a large multipurpose impoundment under construction in the driftless area of southwestern Wisconsin was determined by using stream monitoring data, statistical information, and literature values for point and nonpoint nutrient loading. The impoundment drainage basin is largely rural, and much of the area slopes steeply. Point sources of N and P (sewage treatment plants and farmyards) are small relative to nonpoint sources (runoff from agriculture and forest lands). Stream flow and nutrient concentration are positively related. The major fraction of the nutrient input is from runoff from snowmelt and from early summer storms. The calculated annual loadings of total N and total P were compared to accepted static and dynamic models to predict the resultant water quality. These comparisons indicated that the impoundment would be heavily overloaded with P and so would be highly eutrophic. Owing to the nonpoint nature of the nutrient sources, they would be difficult and expensive to control. Partly as a result of this assessment, further funding for the impoundment was withdrawn.  相似文献   

8.
This study presents major- and trace-element chemistry of plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens volcano. Despite the considerable variation in textures and composition of plagioclase phenocrysts, distinct segments have been cross-correlated between crystals. The variation of Sr and Ba concentration in the melt, as calculated from the concentration in the phenocrysts using partition coefficients, suggests the cores and rims crystallised from compositionally different melts offset by the plagioclase crystallisation vector. In both of these melts Sr and Ba are correlated despite the abundance of plagioclase in the 1980 dacites. We propose that rapid crystallisation of plagioclase upon magma ascent caused a shift in melt composition towards lower Sr and higher Ba, as documented in the rims of the phenocrysts. Although the cores of the phenocrysts crystallised at relatively shallow depths, they preserve the Sr and Ba of the deep-seated melts as they ascended from a deeper region. Further magma ascent resulted in microlite nucleation, which is responsible for a similar shift to even lower Sr concentration as observed in the groundmass of post-18 May 1980 samples. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The cataclysmic eruption of Mount St. Helens on May 18, 1980, resulted in a large, north-facing amphitheater, with a steep headwall rising 700 m above the crater floor. In this deeply shaded niche a glacier, here named the Amphitheater glacier, has formed. Tongues of ice-containing crevasses extend from the main ice mass around both the east and the west sides of the lava dome that occupies the center of the crater floor. Aerial photographs taken in September 1996 reveal a small glacier in the southwest portion of the amphitheater containing several crevasses and a bergschrund-like feature at its head. The extent of the glacier at this time is probably about 0.1 km2. By September 2001, the debris-laden glacier had grown to about 1 km2 in area, with a maximum thickness of about 200 m, and contained an estimated 120,000,000 m3 of ice and rock debris. Approximately one-third of the volume of the glacier is thought to be rock debris derived mainly from rock avalanches from the surrounding amphitheater walls. The newly formed Amphitheater glacier is not only the largest glacier on Mount St. Helens but its aerial extent exceeds that of all other remaining glaciers combined.  相似文献   

10.
High‐resolution charcoal analysis of lake sediment cores was used to reconstruct the fire history from two sites in a mesic hardwood forest of south‐eastern Wisconsin located in the Kettle Moraine State Forest. Pollen data from the region indicate that the sites, which lie within 5 km of each other, have had a consistent presence of mesic hardwood forest for the last 6500 years. A pollen record from one of the sites confirmed the regional vegetation history and the charcoal analysis indicated that fire frequency at each site was temporally linked to regional drought. Periods of high fire occurrence occurred in connection with a region‐wide drought 4200 years ago and, over the last 2000 years, shorter‐scale regional droughts were centred at 1800, 1650, 1100, 1000, 800, 700 and 600 cal a BP. The fire histories indicate that the last 1000 years have had lower fire frequencies than the previous 6500 years and suggest that the mesic hardwood forests may be resilient to increases in fire that may result from future climate change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
St. Catherines Island consists of a complex association of Pleistocene and Holocene sediments. The geographic location of the island at the center of Georgia Bight, a prominent re-entrant in the coastline of the southeastern USA, has resulted in the development of a very complex depositional and erosional history. For over 40,000 years the island has experienced a variety of physical, biological, and anthropological changes brought about by climatic, biotic, depositional, and anthropogenic events. Sedimentary deposits have been studied using diverse research tracks including palynology, dendrology, sedimentology, geophysics, and radiocarbon chronology, as well as archaeological techniques. This research focused on the interpretation of environments of deposition of strata that are exposed within the present surf zone, yet which bear the distinct signatures of upland/inland environments of deposition. Data derived from Late Pleistocene and Holocene accumulations of peat and mollusc- and wood-bearing muddy strata of certain on-shore and near-shore origins reveal diverse events relating to shoreline dynamics, plant community changes, and net shoreward migration of this island during the Late Holocene.  相似文献   

12.
13.
基于开鲁盆地钱家店铀矿床含矿砂岩的偏光显微镜、扫描电子镜显微镜下观察以及元素地球化学分析,探讨了该砂岩型铀矿的形成过程。镜下观察结果显示,该矿床矿石中存在5种矿物蚀变作用类型:高岭石化、褐铁矿化、碳酸盐化、重晶石化和水云母化;钻孔伴生元素特征表明,钱家店部分铀矿体在初次形成后,可能又遭受后期流体叠加改造作用;元素迁移特征表明,矿区总体可能经历了两期不同性质的成矿流体,前期流体导致矿化砂岩的形成,后期流体在此基础上叠加改造,使铀再次富集成高品位铀矿石。综合前人研究资料,认为钱家店铀矿床经历三阶段成矿流体作用:第一阶段为同生沉积铀成矿;第二阶段为油气/热液改造叠加成矿;第三阶段为层间氧化铀成矿。  相似文献   

14.
Far-from-equilibrium batch dissolution experiments were carried out on the 2000–500, 500–250, 250–53 and 53–2 μm size fractions of the mineral component of the B horizon of a granitic iron humus podzol after removal of organic matter and secondary precipitates. The different size fractions were mineralogically and chemically similar, the main minerals present being quartz, alkali and plagioclase feldspar, biotite and chlorite. Specific surface area increased with decreasing grain size. The measured element release rates decreased in the order 53–2>>>2000–500>500–250>250–53 μm. Surface area normalised element release rates from the 2000–500, 500–250 and 250–53 μm size fractions (0.6–77×10−14 mol/m2/s) were intermediate between literature reported surface area normalised dissolution rates for monomineralic powders of feldspar (0.1–0.01×10−14 mol/m2/s) and sheet silicates (100×10−14 mol/m2/s) dissolving under similar conditions. Element release rates from the 53–2 μm fraction (400–3000×10−14 mol/m2/s) were a factor of 4–30 larger than literature reported values for sheet silicates. The large element release rate of the 53–2 μm fraction means that, despite the small mass fraction of 53–2 μm sized particles present in the soil, dissolution of this fraction is the most important for element release into the soil. A theoretical model predicted similar (within a factor of <2) bulk element release rates for all the mineral powders if observed thicknesses of sheet silicate grains were used as input parameters. Decreasing element release rates with decreasing grain size were only predicted if the thickness of sheet silicates in the powders was held constant. A significantly larger release rate for the 53–2 μm fraction relative to the other size fractions was only predicted if either surface roughness was set several orders of magnitude higher for sheet silicates and several orders of magnitude lower for quartz and feldspars in the 53–2 μm fraction compared to the other size fractions or if the sheet silicate thickness input in the 53–2 μm fraction was set unrealistically low. It is therefore hypothesised that the reason for the unpredicted large release rate from the 52–3 μm size fraction is due to one or more of the following reasons: (1) the greater reactivity of the smaller particles due to surface free energy effects, (2) the lack of proportionality between the BET surface area used to normalise the release rates and the actual reactive surface area of the grains and, (3) the presence of traces quantities of reactive minerals which were undetected in the 53–2 μm fraction but were entirely absent in the coarser fractions.  相似文献   

15.
Summary The eastern Pyrenees host a large number of talc-chlorite mineralizations of Albian age (112–97 Ma), the largest of which occur in the St. Barthelemy massif. There talc develops by hydrothermal replacement of dolostones, which were formed by alteration of calcite marbles. This alteration is progressive. Unaltered calcite marbles have oxygen isotope composition of about 25‰ (V-SMOW). The δ18O values decrease down to values of 12‰ towards the contact with dolostones. This 18O depletion is accompanied by Mg enrichment, LREE fractionation and systematic shifts in the Sr isotope compositions, which vary from 87Sr/86Sr = 0.7087–0.7092 in unaltered calcite marbles to slightly more radiogenic compositions with 87Sr/86Sr = 0.7094 near dolomitization fronts. Dolostones have δ18O values (about 9‰) lower than calcitic marbles, higher REE content and more radiogenic Sr isotope composition (87Sr/86Sr = 0.7109 to 0.7130). Hydrothermal calcites have δ18O values close to dolostones but substantially lower δ13C values, down to −6.5‰, which is indicative of the contribution of organic matter. The REE content of hydrothermal calcite is one order of magnitude higher than that of calcitic marbles. Its highly radiogenic Sr composition with 87Sr/86Sr = 0.7091 to 0.7132 suggests that these elements were derived from silicate rocks, which experienced intense chlorite alteration during mineralization. The chemical and isotopic compositions of the calcite marbles, the dolostones and the hydrothermal calcites are interpreted as products of successive stages of fluid-rock interaction with increasing fluid-rock ratios. The hydrothermal quartz, calcite, talc and chlorite are in global mutual isotopic equilibrium. This allows the calculation of the O isotope composition of the infiltrating water at 300 °C, which is in the δ18O = 2–4.5‰ range. Hydrogen isotope compositions of talc and chlorite indicate a δD = 0 to −20‰. This water probably derived from seawater, with minor contribution of evolved continental water.  相似文献   

16.
Clast-supported boulder gravel in outwash-fans along the glacial-maximum margin of the Laurentide Ice Sheet in Wisconsin indicates the occurrence of outburst floods. These sediments, with clast intermediate axes of up to 2 m, are located downstream of tunnel channels and were deposited shortly before cessation of glaciofluvial activity on each fan. Since tunnel channels with fans are widespread along the ice-sheet margin in the western Great Lakes region, these outburst floods were probably common. Paleodischarge estimates derived from the boulder deposits are poorly constrained, but values of at least several hundred m3 s−1 are likely. Four potential water sources for the floods exist: an extreme surface-melt event, an extreme precipitation event, drainage of supraglacial lakes, or drainage of stored subglacial meltwater. We focus on the storage of subglacial meltwater behind the ice-sheet margin, as proglacial permafrost was present as ice advanced to its maximum extent, and a frozen-bed zone upstream from the margin probably impeded drainage through groundwater aquifers. Decay of this permafrost ‘seal’ would have eventually allowed trapped water to drain through the tunnel channels. We suggest that the 2-m boulders were entrained in an outburst of subglacial water that enlarged a pre-existing channel cut by ablation-derived flows.  相似文献   

17.
The St. Lucie Estuary, located on the southeast coast of Florida, provides an example of a subtropical ecosystem where seasonal changes in temperature are modest, but summer storms alter rainfall regimes and external inputs to the estuary from the watershed and Atlantic Ocean. The focus of this study was the response of the phytoplankton community to spatial and temporal shifts in salinity, nutrient concentration, watershed discharges, and water residence times, within the context of temporal patterns in rainfall. From a temporal perspective, both drought and flood conditions negatively impacted phytoplankton biomass potential. Prolonged drought periods were associated with reduced nutrient loads and phytoplankton inputs from the watershed and increased influence of water exchange with the Atlantic Ocean, all of which restrict biomass potential. Conversely, under flood conditions, nutrient loads were elevated, but high freshwater flushing rates in the estuary diminished water residence times and increase salinity variation, thereby restricting the buildup of phytoplankton biomass. An exception to the latter pattern was a large incursion of a cyanobacteria bloom from Lake Okeechobee via the St. Lucie Canal observed in the summer of 2005. From a spatial perspective, regional differences in water residence times, sources of watershed inputs, and the proximity to the Atlantic Ocean influenced the composition and biomass of the phytoplankton community. Long water residence times in the North Fork region of the St. Lucie Estuary provided an environment conducive to the development of blooms of autochthonous origin. Conversely, shorter residence times in the mid-estuary limit autochthonous increases in biomass, but allochthonous sources of biomass can result in bloom concentrations of phytoplankton.  相似文献   

18.
Surface water samples for arsenic (As) concentration and speciation analysis were collected from organic matter-rich blackwaters of the Lake Drummond portion of the Great Dismal Swamp in southeastern Virginia, USA. Arsenic concentrations and speciation were determined by selective hydride generation, gas chromatography with photoionization detection. Surface waters from the Great Dismal Swamp are high in dissolved organic carbon (DOC) concentrations (445–9,600 μmol/kg) and of low pH (4.2–6.4). Total dissolved As concentrations [i.e., As(III) + As(V)], hereafter AsT, range from 2.2 nmol/kg to 21.4 nmol/kg. Arsenite, As(III), concentrations range from ∼1 nmol/kg to 17.7 nmol/kg, and As(V) ranges from ∼1 nmol/kg to 14.1 nmol/kg. Arsenate, As(V), is the predominant form of dissolved As in the inflow waters to the Great Dismal Swamp, whereas within the swamp proper arsenite, As(III), dominates. Arsenite accounts for 8–37% of AsT in inflow waters west of the Suffolk Scarp, and between 54% and 81% of AsT in Lake Drummond and Great Dismal Swamp waters east of the scarp. Arsenite is strongly correlated to DOC (r = 0.94) and inversely related to pH (r = −0.9), both at greater than the 99% confidence level. Arsenate is weakly related to pH and DOC (r = 0.4 and −0.37, respectively), and neither relationship is statistically significant. No statistical relationships exist between As(V) or As(III) and PO4 concentrations. The predominance of As(III) and its strong correlation with DOC in Great Dismal Swamp waters suggest that DOC may inhibit As(III) adsorption or form stable aqueous complexes with As(III) in these waters. Alternatively, phytoplankton and/or bacterially mediated reduction of As(V) may be important processes in the organic-rich blackwaters and/or sediment porewaters of the swamp, leading to the prevalence of As(III) in the water column.  相似文献   

19.
On 18 May 1980, Mount St. Helens erupted explosively with a blast that devastated a 410 km2 area, and triggered a debris avalanche exceeding 2.5 billion m3 into the North Fork Toutle River valley. In addition, mudflows radiated out from the stratovolcano cone into all of the major drainages, destroying structures and filling stream channels with sediment. This paper examines the use of geomorphology in the creation of volcanic hazards maps prior to this eruption, the mitigation strategies used, and the subsequent role of geomorphology in subsequent recovery efforts. A sediment budget is presented that summarizes the yield estimated from many geomorphic sources, based on post-eruption aerial monitoring and ground measurements.  相似文献   

20.
Alteration of uraninite from a hydrothermal vein-type U-deposit in Marshall Pass, Colorado, has been examined by electron microprobe analysis in order to investigate the release and migration of trace elements W, As, Mo, Zr, Pb, Ba, Ce, Y, Ca, Ti, P, Th, Fe, Si, Al, during alteration, under both reducing and oxidizing conditions. The release of trace elements from uraninite is used to establish constraints on the release of fission product elements from the UO2 in spent nuclear fuels. Uraninite occurs with two different textures: (1) colloform uraninite and (2) fine-grained uraninite. The colloform uraninite contains 1.04-1.75 wt% of WO3, 0.16-1.70 wt% of As2O3, 0.06-0.88 wt% of MoO3; whereas, the fine-grained uraninite retains 2.25-4.93 wt% of WO3, up to 5.76 wt% of MoO3, and 0.26-0.60 wt% of As2O3. The near constant concentration of incompatible W in the colloform uraninite suggests W-incorporation into the uraninite structure or homogeneous distribution of W-rich nano-domains. Incorporation of W and Mo into the uraninite and subsequent precipitation of uranyl phases bearing these elements are critically important to understanding the release and migration of Cs during the corrosion of spent nuclear fuel, as there is a strong affinity of Cs with W and Mo. Zoning in the colloform texture is attributed to variation in the amount of impurities in uraninite. For unaltered zones, the calculated amount of oxygen ranges from 2.08 to 2.32 [apfu, (atom per formula unit)] and defines the stoichiometry as UO2+x and U4O9; whereas, for the altered zones of the colloform texture, the oxygen content is 2.37-2.48 [apfu], which is probably due to the inclusion of secondary uranyl phases, mainly schoepite. The supergene alteration resulted in precipitation of secondary uranyl minerals at the expense of uraninite. Four stages of colloform uraninite alteration are proposed: (i) formation of an oxidized layer at the rim, (ii) corrosion of the oxidized layer, (iii) precipitation of U6+-phases with well-defined cleavage, and (iv) fracture of the uraninite surface along the cleavage planes of the U6+-phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号