首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of supermassive black holes by merging and accretion in hierarchical models of galaxy formation is studied by means of Monte Carlo simulations. A tight linear relation between masses of black holes and masses of bulges arises if the mass accreted by supermassive black holes scales linearly with the mass-forming stars and if the redshift evolution of mass accretion tracks closely that of star formation. Differences in redshift evolution between black hole accretion and star formation introduce a considerable scatter in this relation. A non-linear relation between black hole accretion and star formation results in a non-linear relation between masses of remnant black holes and masses of bulges. The relation of black hole mass to bulge luminosity observed in nearby galaxies and its scatter are reproduced reasonably well by models in which black hole accretion and star formation are linearly related but do not track each other in redshift. This suggests that a common mechanism determines the efficiency for black hole accretion and the efficiency for star formation, especially for bright bulges.  相似文献   

2.
We show that for the accretion disk with equipartition between magnetic and radiative pressures, prograde black holes generate outflowing energy in jets more efficiently than retrograde black holes do. Both viscous radiative and irradiative disks provide more efficient outflow jets in the case of a prograde black hole than in the case of a retrograde black hole. Our results confirm the conclusion of Tchekhovskoy & McKinney (2012) that, for the same absolute value of the spin, prograde black holes with geometrically thick accretion disks generate outflows several times more efficiently than retrograde black holes do. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1⋅106 ÷4.2⋅109) M give the values of PRTs varying in the range of about T BH ≃(4.3⋅105 ÷5.6⋅1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (∼13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.  相似文献   

4.
The power of jets from black holes is expected to depend on both the spin of the black hole and the structure of the accretion disc in the region of the last stable orbit. We investigate these dependencies using two different physical models for the jet power: the classical Blandford–Znajek (BZ) model and a hybrid model developed by Meier. In the BZ case, the jets are powered by magnetic fields directly threading the spinning black hole while in the hybrid model, the jet energy is extracted from both the accretion disc as well as the black hole via magnetic fields anchored to the accretion flow inside and outside the hole's ergosphere. The hybrid model takes advantage of the strengths of both the Blandford–Payne and BZ mechanisms, while avoiding the more controversial features of the latter. We develop these models more fully to account for general relativistic effects and to focus on advection-dominated accretion flows (ADAFs) for which the jet power is expected to be a significant fraction of the accreted rest mass energy.
We apply the models to elliptical galaxies, in order to see if these models can explain the observed correlation between the Bondi accretion rates and the total jet powers. For typical values of the disc viscosity parameter  α∼ 0.04 –0.3  and mass accretion rates consistent with ADAF model expectations, we find that the observed correlation requires   j ≳ 0.9  ; that is, it implies that the black holes are rapidly spinning. Our results suggest that the central black holes in the cores of clusters of galaxies must be rapidly rotating in order to drive jets powerful enough to heat the intracluster medium and quench cooling flows.  相似文献   

5.
We demonstrate that the luminosity function of the recently detected population of actively star-forming galaxies at redshift z  = 3 and the B -band luminosity function of quasi-stellar objects (QSOs) at the same redshift can both be matched with the mass function of dark matter haloes predicted by standard variants of hierarchical cosmogonies for lifetimes of optically bright QSOs anywhere in the range 106 to 108 yr. There is a strong correlation between the lifetime and the required degree of non-linearity in the relation between black hole and halo mass. We suggest that the mass of supermassive black holes may be limited by the back-reaction of the emitted energy on the accretion flow in a self-gravitating disc. This would imply a relation of black hole to halo mass of the form M bh ∝  v 5halo ∝  M 5/3halo and a typical duration of the optically bright QSO phase of a few times 107 yr. The high integrated mass density of black holes inferred from recent black hole mass estimates in nearby galaxies may indicate that the overall efficiency of supermassive black holes for producing blue light is smaller than previously assumed. We discuss three possible accretion modes with low optical emission efficiency: (i) accretion at far above the Eddington rate, (ii) accretion obscured by dust, and (iii) accretion below the critical rate leading to an advection-dominated accretion flow lasting for a Hubble time. We further argue that accretion with low optical efficiency might be closely related to the origin of the hard X-ray background and that the ionizing background might be progressively dominated by stars rather than QSOs at higher redshift.  相似文献   

6.
We investigate whether models based on the assumption that jets in quasars are powered by rotating black holes can explain the observed radio dichotomy of quasars. We show that in terms of the 'spin paradigm' models, radio-loud quasars could be objects in which the rotation rate of the black hole corresponds to an equilibrium between spin-up by accretion and spin-down by the Blandford–Znajek mechanism. Radio-quiet quasars could be hosting black holes with an average spin much smaller than the equilibrium one. We discuss possible accretion scenarios which can lead to such a bimodal distribution of black hole spins.  相似文献   

7.
At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 1012 K near the black hole), the electrons are also hot (∼109−10.5 K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.  相似文献   

8.
Current, accumulating evidence for (mildly) relativistic blue‐ and red‐shifted absorption lines in AGNs is reviewed. XMM‐Newton and Chandra sensitive X‐ray observations are starting to probe not only the kinematics (velocity) but also the dynamics (accelerations) of highly ionized gas flowing in‐and‐out from, likely, a few gravitational radii from the black hole. It is thus emphasized that X‐ray absorption‐line spectroscopy provides new potential to map the accretion flows near black holes, to probe the launching regions of relativistic jets/outflows, and to quantify the cosmological feedback of AGNs. Prospects to tackle these issues with future high energy missions are briefly addressed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

10.
High-frequency quasi-periodic variations (HF QPOs) in the X-ray light curves of black hole X-ray novae can be understood as oscillations of the accretion disk in a nonlinear 3:2 resonance. An m = 0 vertical oscillation near a black hole modulates the X-ray emission through gravitational lensing (light-bending) at the source. Certain oscillations of the accretion disk will also modulate the mass accretion rate, and in neutron-star systems this would lead to nearly periodic variations in brightness of the luminous boundary layer on the stellar surface – the amplitude of the neutron-star HF QPOs would be thus increased relative to the black hole systems. The “kHz QPOs” in black holes are in the hecto-Hz range.  相似文献   

11.
Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z > 0.5) AGNs. First, using the archival IUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and Mg II/C IV emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample as calibration, we found two new relationships for determining the black hole mass with the full width at half maximum and the luminosity of Mg II/C IV line. We then apply the relations to estimate the black hole masses of the AGNs in the Large Bright Quasar Survey and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the RBLR-LMgII/C IV relation is consistent with that from the RBLR-L3000 (?)/1350(?) relation. For radio-loud AGNs, however, the mass estimated from the RBLR-LMgII/CIV relation is sys- tematically lower than that from the continuum luminosity L3000(?)/1350(?). Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasize once again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosities should be used to estimate the black hole masses of high redshift radio-loud AGNs.  相似文献   

12.
陈永军 《天文学进展》2003,21(2):122-138
对microquaLsar(微类星体)最新的一些研究结果作了比较全面的评述。具有相对论性喷流的microquaLsar在很多现象上类似于极小尺度上的类星体。对X波段的观测可以探测到吸积盘内区甚至接近黑洞的区域。结合低波段上的观测和研究,人们在吸积盘的动力学模型、物质吸积与喷流形成之间的关系以及喷流的超光速运动等方面的认识都有了长足的进步,并且发现了黑洞存在的新证据。对它们的研究为更好地理解河外天体的相对论性喷流和黑洞吸积方面的问题开辟了一条新的途径。  相似文献   

13.
We report results from a systematic study of X-ray emission from black hole transients in quiescence. In this state, mass accretion is thought to follow the geometry of an outer optically thick, geometrically thin disc and an inner optically thin, geometrically thick radiatively inefficient accretion flow (RIAF). The inner flow is likely also coupled to the jets near the black hole that are often seen in such systems. The goal of the study is to see whether the X-ray emission in the quiescent state is mainly powered by the accretion flow or by the jets. Using data from deep XMM – Newton observations of selected black hole transients, we have found that the quiescent X-ray spectra are, to a high precision, of power-law shape in the cases of GRO J1655-40 and V404 Cyg. Such spectra deviate significantly from the expected X-ray spectrum of the RIAF at very low-accretion rates. On the other hand, they can naturally be explained by emission from the jets, if the emitting electrons follow a power-law spectral distribution (as is often assumed). The situation remains ambiguous in the case of XTE J1550-564, due to the relatively poorer quality of the data. We discuss the implication of the results.  相似文献   

14.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.  相似文献   

15.
We consider a model for quasar formation in which massive black holes are formed and fuelled largely by the accretion of hot gas during the process of galaxy formation. In standard hierarchical collapse models, objects about the size of normal galaxies and larger form a dense hot atmosphere when they collapse. We show that if such an atmosphere forms a nearly 'maximal' cooling flow, then a central black hole can accrete at close to its Eddington limit. This leads to exponential growth of a seed black hole, resulting in a quasar in some cases. In this model, the first quasars form soon after the first collapses to produce hot gas. The hot gas is depleted as time progresses, mostly by cooling, so that the accretion rate eventually falls below the threshold for advection-dominated accretion, at which stage radiative efficiency plummets and any quasar turns off. A simple implementation of this model, incorporated into a semi-analytical model for galaxy formation, overproduces quasars when compared with observed luminosity functions, but is consistent with models of the X-ray background, which indicate that most accretion is obscured. It produces few quasars at high redshift owing to the lack of time needed to grow massive black holes. Quasar fuelling by hot gas provides a minimum level, sufficient to power most quasars at redshifts between one and two, to which other sources of fuel can be added. The results are sensitive to feedback effects, such as might result from radio jets and other outflows.  相似文献   

16.
We investigate the hypothesis that quasars formed together with the stellar populations of early-type galaxies. This hypothesis – in conjunction with the stellar ages of early-type galaxies from population synthesis models, the relation of black hole mass to bulge velocity dispersion, and the velocity dispersion distribution of spheroids from the Sloan Digital Sky Survey – completely determines the cosmic accretion history of supermassive black holes and the redshift evolution of the characteristic luminosity. On the other hand, the precise shape of the luminosity function of quasars depends on the light curve of quasars and – in the optical, but not so much in X-rays – on the covering factor of the dust surrounding the active nucleus. We find a plausible set of assumptions for which the coeval formation of supermassive black holes and elliptical galaxies is in good agreement with the observed B -band and X-ray luminosity functions of quasars.  相似文献   

17.
We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution.  相似文献   

18.
In the last decade multi-wavelength observations have demonstrated the importance of jets in the energy output of accreting black hole binaries. The observed correlations between the presence of a jet and the state of the accretion flow provide important information on the coupling between accretion and ejection processes. After a brief review of the properties of black hole binaries, I illustrate the connection between accretion and ejection through two particularly interesting examples. First, an INTEGRAL observation of Cygnus X-1 during a ‘mini-’ state transition reveals disc jet coupling on time scales of orders of hours. Second, the black hole XTEJ1118+480 shows complex correlations between the X-ray and optical emission. Those correlations are interpreted in terms of coupling between disc and jet on time scales of seconds or less. Those observations are discussed in the framework of current models.  相似文献   

19.
We assembled a sample of Seyfert 1 galaxies, quasi-stellar objects (QSOs) and low-luminosity active galactic nuclei (LLAGNs) observed by ASCA , the central black hole masses of which have been measured. We found that the X-ray variability (which is quantified by the 'excess variance' σ rms2) is significantly anti-correlated with the central black hole mass, and it is likely that a linear relationship of σ rms2∝ M bh−1 exists. It can be interpreted that the short time-scale X-ray variability is caused by some global coherent variations in the X-ray emission region, which is scaled by the size of the central black hole. Hence the central black hole mass is the driving parameter of the previously established relation between X-ray variability and luminosity. Our findings favour the hypothesis that the narrow-line Seyfert 1 galaxies and QSOs harbour smaller black holes than the broad-line objects, and can also easily explain the observational fact that high-redshift QSOs have greater variability than local AGNs at a given luminosity. Further investigations are needed to confirm our findings, and a large sample X-ray variability investigation can give constraints on the physical mechanisms and evolution of AGNs.  相似文献   

20.
We discuss the prospects for detecting faint intermediate-mass black holes, such as those predicted to exist in the cores of globular clusters and dwarf spheroidal galaxies. We briefly summarize the difficulties of stellar dynamical searches, then show that recently discovered relations between black hole mass, X-ray luminosity and radio luminosity imply that in most cases, these black holes should be more easily detected in the radio than in the X-rays. Finally, we show upper limits from some radio observations of globular clusters, and discuss the possibility that the radio source in the core of the Ursa Minor dwarf spheroidal galaxy might be a ∼10,000–100,000 M⊙ black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号