首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We present a brief review of gravity forward algorithms in Cartesian coordinate system, including both space-domain and Fourier-domain approaches, after which we introduce a truly general and efficient algorithm, namely the convolution-type Gauss fast Fourier transform (Conv-Gauss-FFT) algorithm, for 2D and 3D modeling of gravity potential and its derivatives due to sources with arbitrary geometry and arbitrary density distribution which are defined either by discrete or by continuous functions. The Conv-Gauss-FFT algorithm is based on the combined use of a hybrid rectangle-Gaussian grid and the fast Fourier transform (FFT) algorithm. Since the gravity forward problem in Cartesian coordinate system can be expressed as continuous convolution-type integrals, we first approximate the continuous convolution by a weighted sum of a series of shifted discrete convolutions, and then each shifted discrete convolution, which is essentially a Toeplitz system, is calculated efficiently and accurately by combining circulant embedding with the FFT algorithm. Synthetic and real model tests show that the Conv-Gauss-FFT algorithm can obtain high-precision forward results very efficiently for almost any practical model, and it works especially well for complex 3D models when gravity fields on large 3D regular grids are needed.  相似文献   

2.
青海地区S波分裂研究   总被引:5,自引:5,他引:0       下载免费PDF全文
本文利用国家地震台网及中国地震局“十五”期间在青海布设的30个宽频带地震台站记录到的远震波形数据,分别采用最小能量法和旋转相关法对SKS、SKKS和PKS波震相进行了偏振分析,计算了台站下方介质的各向异性分裂参数:快波的偏振方向(φ)和慢波延迟时间(δt).本文研究结果表明,研究区多数台站下方的地震各向异性参数都表现出随方位角变化而变化的特征,可以用双层各向异性模型来解释.其中上层各向异性的快波偏振方向位于N65°E~N95°E之间,可能与中下地壳物质的流动有关;而下层各向异性的快波偏振方向位于N105°E~N135°E之间,可能为祁连块体NEE向的推移及导致的岩石圈缩短有关.此外,我们还发现,与周边的台站下方各向异性分裂参数相比,昆仑断裂附近两个台站GOM和DAW的各向异性特征急剧变化,其快波方向都与该断层近乎平行,这很可能暗示昆仑断裂已经切穿整个岩石圈;阿尔金断裂附近两个台站(LEH和HTG)无效分裂事件的方位分布与阿尔金断裂走向缺乏相关性,我们推测研究区内阿尔金断裂可能为地壳尺度的断裂.  相似文献   

3.
The resonant sonic drilling method offers unique capabilities to the environmental restoration market. By using a drill head that imparts high-frequency, high-force vibrations into a steel drill pipe, continuous, relatively undisturbed cores can be taken through virtually any formation. The resonant sonic method requires no mud, air, water, or other circulating medium for penetration: drills very fast; easily drills at any angle through formations such as rock, clay, sand, boulders, permafrost, or glacial till; and yields no cuttings in the drilling process. Case histories of projects using the method demonstrate excellent results but also indicate several problem areas with the method in its present state. Expanding research efforts to further develop the resonant sonic drilling method should help solve current drawbacks, and could produce a drilling technology for environmental work that significantly changes the way monitoring wells are drilled and constructed.  相似文献   

4.
采用稳定型双共轭梯度快速Fourier变换(BCGS-FFT)算法精确计算二维均匀介质中的积分方程.采用一种新的插值函数作为基函数和试探函数对积分方程进行弱化离散,离散后的积分方程采用稳定型双共轭梯度迭代方法进行求解,从而得到异常体内电场的分布.计算时采用快速Fourier变换技术将积分方程内Green函数与电场的乘积表示成褶积形式以加快计算速度.数值计算举例说明了算法的精确性和有效性.  相似文献   

5.
Resistivity monitoring surveys are used to detect temporal changes in the subsurface using repeated measurements over the same site. The positions of the electrodes are typically measured at the start of the survey program and possibly at occasional later times. In areas with unstable ground, such as landslide‐prone slopes, the positions of the electrodes can be displaced by ground movements. If this occurs at times when the positions of the electrodes are not directly measured, they have to be estimated. This can be done by interpolation or, as in recent developments, from the resistivity data using new inverse methods. The smoothness‐constrained least squares optimisation method can be modified to include the electrode positions as additional unknown parameters. The Jacobian matrices with the sensitivity of the apparent resistivity measurements to changes in the electrode positions are then required by the optimisation method. In this paper, a fast adjoint‐equation method is used to calculate the Jacobian matrices required by the least squares method to reduce the calculation time. In areas with large near‐surface resistivity contrasts, the inversion routine sometimes cannot accurately distinguish between electrode displacements and subsurface resistivity variations. To overcome this problem, the model for the initial time‐lapse dataset (with accurately known electrode positions) is used as the starting model for the inversion of the later‐time dataset. This greatly improves the accuracy of the estimated electrode positions compared to the use of a homogeneous half‐space starting model. In areas where the movement of the electrodes is expected to occur in a fixed direction, the method of transformations can be used to include this information as an additional constraint in the optimisation routine.  相似文献   

6.
赵松年 《地震学报》1982,4(4):434-438
如何精确地测定地震观测系统的频谱特性,是测震学中的一项重要课题。目前所用的分段测量和计算的方法,不仅需要一定的仪器设备,而且还忽略了机(拾震器)——电(放大装置)接口部分的相互作用和影响。因此,不能获得精确的幅频特性,也不能用实验直接得出相位特性。 本文通过傅里叶变换推导出计算与实测任何一种测震系统频谱特性的方法————TS方法,其中用三角波与阶跃函数作为测试信号。 如果对测试信号的动态响应已知,则所研究的系统频谱特性可立即求得。   相似文献   

7.
In this study we derive expressions for particle displacement or particle velocity anywhere inside a stratified earth and at its surface due to horizontal torque source located in the top layer. Equivalently, invoking Green's function reciprocity theorem, the solution applies also to the case of a surface or subsurface source when the resulting displacement or velocity is measured within the top layer. In order to evaluate the closed-form analytical solution economically and accurately it is advisable to introduce inelastic attenuation. Causal inelastic attenuation also lends the necessary realism to the computed seismic trace. To provide proof that the analytical solution is indeed correct and applicable to the multilayer case, a thick uniform overburden was assumed to consist of many thin layers. The correctness of the computed particle velocity response can be very simply verified by inspection. The computed response can also serve as a check on other less accurate methods of producing synthetic seismograms, such as the techniques of finite differences, finite elements, and various sophisticated ray-tracing techniques. It is not difficult to construct horizontal surface torque source. It appears that such source is well suited for seismic exploration in areas with a high-velocity surface layer. A realistic source function is analyzed in detail and normalized displacement response evaluated at different incidence angles in the near and the far fields. In an effort to distinguish the features of an SH torque seismogram from a pressure seismogram two models with identical layerings and layer parameters have been set up. As expected the torque seismogram is very different from the compressional seismogram. One desirable feature of a torque seismogram is the fast decay of multiples. Exact synthetic seismograms have many uses; some of them, such as the study of complex interference phenomena, phase change at wide angle reflection, channeling effects, dispersion (geometrical and material), absolute gain, and inelastic attenuation, can be carried out accurately and effortlessly. They can also be used to improve basic processing techniques such as deconvolution and velocity analysis. The numerical evaluation of the analytical solution of the wave equation as described in this paper has a long history. Most of the work leading to this paper was carried out by one of us (M. J. K.) in the years 1957 to 1968 at the Geophysical Research Corporation. However, the full testing of the various computer codes was carried out only very recently at the Phillips Petroleum Company.  相似文献   

8.
波动方程反演的全局优化方法研究   总被引:3,自引:1,他引:2       下载免费PDF全文
复杂介质波动方程反演是地球物理研究中的重要问题,通常表述为特定目标函数最优化,难点是多参数、非线性和不适定性.局部和全局优化方法都不能实现快速全局优化.本文概述了地震波勘探反演问题的理论基础和研究进展,阐述了反演中优化问题的解决方法和面临的困难,并提出了一种确定性全局优化的新方法.通过在优化参数空间识别并划分局部优化解及其附近区域,只需有限次参数空间划分过程就能发现所有局部解(集合);基于复杂目标函数多尺度结构分析,提出多尺度参数空间分区优化方法的研究方向.该方法收敛速度快,优化结果不依赖初始解的选取,是对非线性全局优化问题的一个新探索.  相似文献   

9.
The location of the 2006 nuclear explosion in North Korea has been accurately imaged by back-projected regional Pn waves recorded by the Japanese Hi-net array. Based on the determined location, the nuclear explosion site can be identified from geo-referenced FORMOSAT-2 satellite images. The seismically determined epicenter is about 2.5 km northeast of the original estimate of its absolute location. Results indicate that a remote suspect event had been unambiguously detected and accurately located by a dense array within a regional distance. Employing ground truth correction, the satellite images can be referenced for shifting the array-determined epicenter to its absolute position. After correction, this event can be treated as a reference event for accurately locating future nuclear explosions. Our study utilizes public information from a dense seismic network and further demonstrates that commercial observation satellites can accurately monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty, as well as earthquake and tsunami hazards almost in real time.  相似文献   

10.
Field MS 《Ground water》2008,46(1):156-159
Calculation of time of travel from tracing studies in hydrologic systems is critical to establishing pollutant arrival times from points of inflow to points outflow, calculating subsurface flow velocities, and determining other important transport parameters such as longitudinal dispersion. In addition, breakthrough curve modeling demands accurate time of travel calculations if model results are to have any realistic meaning. However, accurate time of travel calculations are very difficult for long tracer tests in which sampling schedules are not consistent, or when there are major disruptions such as may occur when adverse weather conditions cause automatic sampling equipment to fail. Long and inconsistent sampling times may be accurately converted to decimal times of travel by converting the conventionally recorded Coordinated Universal Time for sampling date and time event to a baseline time standard. By converting to a baseline time standard, all recorded dates and times are linked to the established baseline standard so that each succeeding sampling date and time are correctly determined relative to the previous sampling date and time and to the injection date and time.  相似文献   

11.
The main problem in seismic prospecting is to infer from the observed reflection response the distribution of density and seismic velocity with depth. This process is generally called the inversion of the reflection data. For plane waves propagating through plane parallel stratification, it can be shown that at any depth the ratio between the amplitude of the transmitted and reflected wave satisfies the Riccati equation. Based on this equation we have formulated an iterative inversion method, which is found to be suitable for numerical computations. We have applied this method on synthetic reflection data, and found that it provides a very fast and accurate inversion.  相似文献   

12.
Discharge, especially during flood periods, is among the most important information necessary for flood control, water resources planning and management. Owing to the high flood velocities, flood discharge usually cannot be measured efficiently by conventional methods, which explains why records of flood discharge are scarce or do not exist for the watersheds in Taiwan. A fast method of flood discharge estimation is presented. The greatest advantage of the proposed method is its application to estimate flood discharge that cannot be measured by conventional methods. It has as its basis the regularity of open‐channel flows, i.e. that nature maintains a constant ratio of mean to maximum velocities at a given channel section by adjusting the velocity distribution and the channel geometry. The maximum velocity at a given section can be determined easily over a single vertical profile, which tends to remain invariant with time and discharge, and can be converted to the mean velocity of the entire cross‐section by multying by the constant ratio. Therefore the mean velocity is a common multiple of maximum velocity and the mean/maximum velocity ratio. The channel cross‐sectional area can be determined from the gauge height, the water depth at the y‐axis or the product of the channel width multiplied by the water depth at the y‐axis. Then the most commonly used method, i.e. the velocity–area method, which determines discharge as the product of the cross‐sectional area multiplied by mean velocity, is applied to estimate the flood discharge. Only a few velocity measurements on the y‐axis are necessary to estimate flood discharge. Moreover the location of the y‐axis will not vary with time and water stage. Once the relationship of mean and maximum velocities is established, the flood estimation can be determined efficiently. This method avoids exposure to hazardous environments and sharply reduces the measurement time and cost. The method can be applied in both high and low flows in rivers. Available laboratory flume and stream‐flow data are used to illustrate accuracy and reliability, and results show that this method can quickly and accurately estimate flood discharges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
本文讨论了利用二级近似离散复镜像法实现低频格林函数快速、精确的计算.通过数值分析,给出了在低频电磁场计算中该方法近似参数的选取原则.(1)二级近似的积分区间里谱格林函数采样个数N为十倍的近似多项式的个数M;(2)总的积分区间L2大小约为40/r,r为收发距离;(3)两个积分区间的分界值L1为总的积分区间大小L2与第二个...  相似文献   

14.
Reduced visibilities have been simulated in the laboratory by means of a hydrosol. It was illuminated homogeneously by iodine quartz lamps producing an illuminance similar to a bright day. In the hydrosol several visibility targets were suspended at different distances and the visibility observation was performed by counting the number of visible objects. By this method a very accurate and fast determination of the visibility was possible. The extinction coefficient of the hydrosol was determined with a long path photometer: the intrinsic brightness of the objects in the illuminated hydrosol was determined for several wavelengths by means of a fiber optic. The correlation between the measured visibility and the extinction coefficient shows that the frequently used visual range underestimates the visibility, since the highest perception for an atmospheric aerosol is not at 550 nm but at 580 nm wavelength. Therefore it is suggested to use the atmospheric extinction coefficient at 580 nm for the calculation of the visual range. All colored objects could be seen less far, since they had a smaller contrast at the wavelength of maximum perception than the black object. Dark colored objects can be seen further than bright ones. Especially objects that have a high reflection in the yellow and organe have a small visibility. If the intrinsic brightness of the objects and the extinction coefficient (both as a function of wavelength) are known, the wavelength of maximum perception can be calculated and from this the visibility. The visibility thus calculated agrees with the observed visibility. If visibility observations in the atmosphere have to be performed with non-black objects, methods for corrections to the visibilty of a black object are given.  相似文献   

15.
四川汶川8级大地震灾害损失快速评估研究/   总被引:18,自引:2,他引:16       下载免费PDF全文
王晓青  丁香  王龙  王岩 《地震学报》2009,31(2):205-211
地震发生之后,在没有开展地震现场调查之前,迅速对地震造成的人员伤亡、直接经济损失等进行评估,对地震应急救援决策非常重要.本文叙述了基于宏观经济指标的地震灾害损失评估方法,根据我国1989——2004年地震现场灾害损失调查资料重新确定的地震易损性模型,给出了汶川8级大地震发生后依据估计的经验地震烈度图得到的地震损失快速评估结果,并与依据现场调查确定的地震烈度分布图给出的地震损失评估结果进行了比较.表明根据近20年我国实际地震震例确定的地震易损性模型具有较好的适用性,损失评估结果的最大不确定来自于对地震影响场的估计.   相似文献   

16.
The local geology and shallow S-wave velocity structure of a site are recognized to be key factors for the increase in the damaging potential of seismic waves. Indeed, seismic amplitudes may be amplified in frequency ranges unfavorable for building stock by the presence of soft sedimentary covers over lying hard bedrock. Hence, microzonation activities, which aim at assessing the site response as accurately as possible, have become a fundamental task for the seismic risk reduction of urbanized areas. Methods based on the measurement of seismic noise, which typically are fast, non-invasive, and low cost, have become a very attractive option in microzonation studies.Using observations derived from seismic noise recordings collected by two-dimensional arrays of seismic stations, we present a novel joint inversion scheme for surface wave curves. In particular, the Love wave, the Rayleigh wave dispersion and the HVSR curves are innovatively combined in a joint inversion procedure carried out following a global search approach (i.e., the Genetic Algorithm).The procedure is tested using a data set of seismic noise recordings collected at the Bevagna (Italy) test-site. The results of the novel inversion scheme are compared with the inversion scheme proposed by Parolai et al. (2005), where only Rayleigh wave dispersion and HVSR curves are used, and with a cross-hole survey.  相似文献   

17.
The problem of equivalence in direct current (DC) resistivity and electromagnetic methods for a thin resistive and conducting layer is well‐known. Attempts have been made in the past to resolve this problem through joint inversion. However, equivalence still remains an unresolved problem. In the present study, an effort is made to reduce non‐uniqueness due to equivalence using global optimization and joint inversion by successive refinement of the model space. A number of solutions derived for DC resistivity data using very fast simulated annealing global inversion that fits the observations equally well, follow the equivalence principle and show a definite trend. For a thin conductive layer, the quotient between resistivity and thickness is constant, while for a resistive one, the product between these magnitudes is constant. Three approaches to obtain very fast simulated annealing solutions are tested. In the first one, layer resistivities and thicknesses are optimized in a linear domain. In the second, layer resistivities are optimized in the logarithmic domain and thicknesses in the linear domain. Lastly, both layer resistivities and thicknesses are optimized in the logarithmic domain. Only model data from the mean models, corresponding to very fast simulated annealing solutions obtained for approach three, always fit the observations. The mean model defined by multiple very fast simulated annealing solutions shows extremely large uncertainty (almost 100%) in the final solution after inversion of individual DC resistivity or electromagnetic (EM) data sets. Uncertainty associated with the intermediate resistive and conducting layers after global optimization and joint inversion is still large. In order to reduce the large uncertainty associated with the intermediate layer, global optimization is performed over several iterations by reducing and redefining the search limits of model parameters according to the uncertainty in the solution. The new minimum and maximum limits are obtained from the uncertainty in the previous iteration. Though the misfit error reduces in the solution after successive refinement of the model space in individual inversion, it is observed that the mean model drifts away from the actual model. However, successive refinement of the model space using global optimization and joint inversion reduces uncertainty to a very low level in 4–5 iterations. This approach works very well in resolving the problem of equivalence for resistive as well as for conducting layers. The efficacy of the approach has been demonstrated using DC resistivity and EM data, however, it can be applied to any geophysical data to solve the inherent ambiguities in the interpretations.  相似文献   

18.
The long series tidal gravity observations from 1997 to 2002 recorded with C032 superconducting gravimeter (SG) at station Wuhan/China are used in order to study the Earth's geodynamics. The tidal gravity parameters are determined precisely using Eterna software package after careful data pre-processing. The Earth's free core nutation (FCN) resonant parameters (eigenperiods, quality factors and resonant strengths) are determined accurately. The results show the determined eigenperiod to be 431.0 sidereal days with an accuracy of ±1.81%, the quality factor is a negative one as of −7002, and the resonance strength can be explained by the elastic property of the Earth's mantle. The discrepancy of the eigenperiods when using various ocean models can amount to ±1.8%. The 30 sidereal days difference between the determined eigenperiod in this paper and the one in theoretical computation given by Wahr and Bergen can be explained by the real dynamic ellipticity of the Earth's liquid core, i.e., it is about 5% larger than the one under the hydrostatic equilibrium assumption.  相似文献   

19.
地质雷达在活动断裂研究中的应用   总被引:1,自引:0,他引:1  
对于快速发生沉积和侵蚀的地区,断裂附近的古地震遗迹会很快被掩埋。获取这些地区断裂的位置、上断点的埋深和标志层的断距等方面的数据至关重要。本文利用地质雷达探测技术探测这些被埋藏的古地震遗迹。以北京平原区正断性质的新夏垫断裂和青藏高原东北缘六盘山地区逆冲性质的六盘山东麓断裂为实验区。通过探测发现,对于断裂两侧地表覆盖层主要为粉土或粉质粘土的新夏垫断裂,地质雷达可精确定位断裂通过的位置,指示上断点的埋深,但无法在地质雷达剖面上识别出各套地层。对于在T1基座阶地上通过的六盘山东麓断裂,地质雷达不但可以精确定位断裂的位置,而且可以在地质雷达剖面上识别出各套地层,进而求得断裂两侧基座的断距。  相似文献   

20.
利用X—CT研究大庆油田双重介质裂缝和砂岩孔隙度   总被引:1,自引:0,他引:1  
采用X-CT图象分析技术以研究双重介质的砂岩裂缝和孔隙度,对于稳产开采石油是很有价值的。X-CT法测量双重介质也隙度的优越性在于利用图象分析技术可以分别给出裂缝和砂岩的孔隙度,它同移重方法和核孔隙计测量的数据对比,是一种精度高,直观,无损伤的实验技术,X-CT测量双重介质孔隙度可给出孔隙度的分布,这有利于了解和预测残余油的分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号