首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geologic structures can represent planes of preferential weakness that, by dismembering the roof beam, may contribute to the failure of roof spans. However, beam deflection and roof failure also occur in rocks where no visible geologic discontinuities are present. This suggests that roof failure may depend on rock strength, which in turn depends on intrinsic textural properties inherent to the rock. In this study, rock samples were collected from horizontal stress-related roof fall material in coal mines for petrographic characterization and compressive strength testing. Brittle, stress failure-prone rock types include thinly interlaminated siltstone and shale, and black shale that had been lightly recrystallized. Samples exhibit a narrow range of density values between approximately 2.5–3.0 g/cm3 but exhibit a wide range of unconfined compressive strength values, between approximately 20–70 MPa. Results of laboratory observations suggest that for samples of coal mine immediate roof shale, compressive strength is not well correlated with density, grain size, sutured grain boundaries, or quartz content. These results for shale are generally at odds with the results of similar studies for sandstone. The great variability of strength, texture, and mineralogy documented in these samples may be an indication of their complexity and the need for specialized methodology in the study of shale strength.  相似文献   

2.
Summary Two faults related to the Pine Mountain overthrust sheet near Buchanan County, Virginia, were investigated to determine their effect on ground control and to develop recognition criteria for prediction. Both faults are right lateral, strike-slip faults overprinted simultaneously with thrust faulting. Offsets of the coal seam due to thrust faulting average 6 ft with severe roof conditions (20 ft high roof falls) occurring through an average 30 ft wide zone of disturbance. Recognition criteria include characteristic overthrusting, coalbed swag, bedding plane slippage, and fault gouge. Ground control strategies include mine designs that minimize fault exposure.  相似文献   

3.
岩体完整性是进行巷道顶板稳定性分级的一个重要指标,当前分级方法均是从一维角度对岩体结构进行描述,不能全面刻画出三维空间上顶板围岩的完整性。针对这一缺陷,引入裂隙岩体块体化程度理论,以块体化程度代替常规标准中表征岩体完整性的岩体质量RQD值和节理间距两项子指标,开展裂隙岩体巷道顶板稳定性分级研究,创新形成了一种适用于裂隙岩体顶板稳定性分级的BT分级方法。以块体百分比和块体体积曲线为基本依据,构建出裂隙岩体巷道顶板围岩块体化程度的解算流程;运用AHP法对稳定性影响因素权重进行了排序,制定出稳定性分级方法与标准。以铜坑矿92号矿体裂隙岩体试验区巷道顶板结构面调查数据和岩石力学参数为基础,运用传统分级方法RMR法和BT法分别对各试验区巷道顶板稳定性进行评价,对两种分级结果进行比较分析,结果表明:与传统的RMR法相比,BT法在稳定性描述、分级准确性和安全管理指导作用等方面更为优越,更能够客观真实地反映出裂隙岩体巷道顶板稳定性。研究成果可为复杂裂隙岩体条件下的巷道顶板安全分级与管理提供更为可靠的科学依据。  相似文献   

4.
Shear failure is a common failure mechanism in underground coal mine roadways. This paper presents an innovative numerical approach to simulate shear failure of a coal mine roadway roof. The distinct element code, UDEC, incorporating a proposed Trigon logic is employed for the study. Using this approach, shear failure in the mine roof characterized by fractured initiation and propagation is successfully captured. The results suggest that shear failure of the roadway roof initiates at the roadway corners and then progressively propagates deeper into the roof, finally forming a large scale roof failure. The numerical results confirmed the time sequence of marked microseismic activity, significant stress changes and accelerated displacement during the process of a roof fall. The effect of rock bolting in the control of roof shear failure in a roadway is evaluated using the UDEC Trigon approach. It is found that the installation of rock bolts constrains rock dilation, reduces failure of rock bridges and maintains rock strength thereby leading to a significant decrease in roof sag.  相似文献   

5.
“十三五”以来,围绕“我国煤矿井下煤层区域增透瓦斯高效抽采和坚硬顶板岩层弱化区域治理”两大难题,将定向长钻孔与分段压裂技术结合,通过技术攻关与装备研发及工程试验,在煤矿井下定向长钻孔分段水力压裂技术和装备研发及工程示范应用等方面均取得了明显进展。主要表现在如下4个方面:(1)开发了适合于煤矿井下煤岩层裸眼定向长钻孔不动管柱和动管柱两种分段水力压裂工艺技术与工具,不动管柱分段压裂工程应用钻孔长度突破了500 m,单孔压裂实现了5段;动管柱分段压裂钻孔长度工程应用突破了800 m,单孔压裂实现了17段。(2)研发了煤矿井下低压端加砂压裂泵组和高压端加砂压裂装置,低压端加砂泵组压力达到了70 MPa,排量达到90 m3/h,携砂比达到20%;高压端加砂压裂装备耐压能力达到55 MPa,一次连续加砂压裂的砂量达到750 kg;低压端和高压端加砂装备均在现场进行了工程应用,应用结果表明装备均具有较好携砂压裂能力。(3)建立了碎软煤层围岩分段压裂和硬煤顺层钻孔分段压裂区域增透瓦斯高效抽采技术模式,前者在山西阳泉矿区和陕西韩城矿区应用钻孔瓦斯抽采纯量均值分别达到了2 811 m3/d和1 559 m3/d,后者在陕西彬长矿区应用钻孔瓦斯抽采纯量达到了2 491 m3/d。(4)探索出了坚硬顶板强矿压煤矿井下定向长钻孔分段水力压裂主动超前区域弱化治理的新模式,工程应用钻孔长度突破了800 m,坚硬顶板分段水力压裂治理后,顶板来压步距、动载系数和最高压力值较未压裂区分别下降了18.9%~70.6%,5.8%~7.9%,13.7%~19.4%,有效治理了工作面坚硬顶板引起的强矿压灾害。随着煤矿井下分段水力压裂技术改进和煤矿智能开采发展的实际需要,提出了煤矿井下大排量高压力智能压裂泵组、井下长钻孔裸眼分段压裂智能工具等装备和煤矿井?地联合分段水力压裂技术研发方向,以更好地推动煤矿井下水力压裂技术与装备发展,为煤矿安全高效绿色智能开采提供技术和装备支撑。   相似文献   

6.
Summary The selection of rock bolting lengths and spacings for a mine roof or back is relatively straightforward when wedges of rock bound by discrete discontinuities require support, or when the immediate roof can be anchored into a recognizably stable layer or rock mass. When neither of these situations is present the choice of bolt lengths and spacings is more difficult.In this paper a simplified conceptual model is presented which invokes the concept of an ellipticallyshaped zone of loosening above the opening, all, or a portion of which, may require support. The analysis includes the influence of opening span, height,in situ stress state, and rock mass quality as measured by the CSIR Rock Mass Classification.Validation of the model was sought by analysing a number of case histories in the literature.  相似文献   

7.
This paper presents a case study investigation into the hydrogeological characteristics and permeability of rock mass in a seabed mine. Following an introduction to the geology and hydrogeological conditions in the Xinli mine area, we reveal the features of the preferred structural planes, dynamic characteristics of mine water seepage, and the permeability of the fractured rock mass in the pit. The permeability of the pit rock mass shows varied characteristics at different geotectonic locations because of the different degrees to which the structural planes developed. The fractured rock mass generally shows low permeability, and the main composition of water seepage is high-salinity brine. Future large-scale undersea mining may induce rock mass movement, destroy water-resistant layers, and enhance water transmissibility and the probability of water gushing into the pit. Thus, strengthening the quality of the filling mass, protecting the stope roof and the water-resistant layers, as well as regular monitoring of water seepage discharge and identification of water sources are critical to work safety and the prevention of seawater gushing in the mine.  相似文献   

8.
高家梁煤矿位于内蒙古鄂尔多斯市东胜区东南8km处,矿井设计规模年产600×104吨。建井期间在埋深50~150m的运输大巷中部,遇到一种低强度软岩,巷道掘进与施工过程中冒顶、塌方时有发生,常规锚杆支护失效,对施工安全和进度造成很大影响。基于巷道地质情况与软岩特征,根据巷道围岩松动圈理论及围岩与支护作用关系,重点分析了软岩巷道的变形、顶板失稳机理,确定了运输大巷的工程加固方法。经过ADINA数值模拟验算以及后期的运输大巷变形监测曲线都证明加固方案满足运输大巷对支护刚度和强度的要求,同时还将加固方案进行了经济评价,得出了这种加固方案对于高家梁矿的特殊软岩巷道段加固在技术上可行,经济上可以接受的结论。  相似文献   

9.
Kinmen Island is a small, tectonically stable, granitic island that has been suffering from a scarcity of fresh water resources due to excessive annual evapotranspiration over annual precipitation. Recent studies further indicate that shallow (0–70 m) sedimentary aquifers, the major sources of groundwater supply, have already been over-exploited. Therefore, this preliminary study is to investigate the existence of exploitable water resources that can balance the shortage of fresh water on this island. Site characterization data are obtained from island-wide geophysical surveys as well as small-scale tests performed in a study area formed by three deep (maximum depth to 560 m) vertical boreholes installed in mid-east Kinmen northeast to Taiwu Mountain. Vertical fracture frequency data indicate that the rock body is fractured with a spatially correlated pattern, from which three major fracture zones (depths 0–70, 330–360, and below 450 m) can be identified. Geologic investigations indicate that the deepest fracture zone is caused by the large-scale, steeply dipping Taiwushan fault. This fault may have caused a laterally extensive low-resistivity zone, a potential fractured aquifer, near Taiwu Mountain. The middle fracture zone is induced by the Taiwushan fault and intersects the fault approximately 21 m southeast of the study area below a depth of 350 m. Slug testing results yield fracture transmissivity varying from 4.8 × 10−7 to 2.2 × 10−4 m2/s. Cross-hole tests have confirmed that hydraulic connectivity of the deeper rock body is controlled by the Taiwushan fault and the middle fracture zone. This connectivity may extend vertically to the sedimentary aquifers through high-angle joint sets. Despite the presence of a flow barrier formed by doleritic dike at about 300 m depth, the existence of fresh as well as meteoric water in the deeper rock body manifests that certain flow paths must exist through which the deeper fractured aquifers can be connected to the upper rock body. Therefore, groundwater stored within the Taiwushan fault and the associated low-resistivity zone can be considered as additional fresh water resources for future exploitation.  相似文献   

10.
裂隙岩体的防渗加固是影响工程稳定和安全的关键技术问题之一。在以往微生物加固砂土技术基础上,将微生物加固技术应用于裂隙岩体灌浆加固,研究结果表明,(1) 加固前围压对裂隙岩样的水力开度影响很大,加固后裂隙被碳酸钙沉积物充填,岩样的渗流由裂隙渗流转变为孔隙渗流,单位渗流量和渗透系数由围压和渗透水压共同控制;(2) 微生物灌浆加固后,不同围压和渗透水压力作用下裂隙岩样的单位时间渗流量减小了80.12%~90.04%,渗透系数可达到10–6 cm/s数量级;(3) 裂隙岩样灌浆加固过程中微生物诱导产生的CaCO3沉积物具有较好胶结作用,将劈裂岩样胶结为一个整体,达到了加固防渗效果。研究成果可为裂隙岩体的灌浆加固提供较好的参考。  相似文献   

11.
12.
导水裂隙带发育高度是矿井水害预测的重要技术参数之一。以彬长矿区文家坡煤矿4103工作面为研究对象,利用井-地联合微震监测技术对顶板导水裂隙带发育特征进行研究。研究结果表明:深埋煤层开采时,微震事件超前工作面回采位置发育,超前影响角最大为35°,最小为28°;断层的存在降低了覆岩稳定性,相较于正常基岩,更易在回采影响下发生应力集中和破坏;断层加大了微震事件发生的超前距,而采空区则使微震事件的高密度区向其所在部位发生偏移,加剧覆岩破坏程度,增大导水裂隙带发育高度;垂向上,4103工作面监测区内的微震事件高密度区域主要集中在高程+400~+520 m,结合微震事件数量和能量分布特征,判定4103工作面垮落带发育高度为50 m,垮采比13.16,导水裂隙带发育高度为117 m,裂采比为30.79。该成果可为彬长矿区类似煤矿深埋煤层顶板导水裂隙带发育高度研究及顶板水防治提供重要依据。移动阅读   相似文献   

13.
Summary  Underground excavation in fractured rock masses can lead to instability of rock blocks on its perimeter. Among the stabilization measures that are often used, dowels or passive bolts play an important role. These passive reinforcement measures cannot, however, be easily considered in simplified calculation techniques based on the Limit Equilibrium Method (LEM). The analysis of such elements cannot be separated from rock-dowel interaction following the displacement of the block. A new simplified calculation procedure is presented in this paper for the analysis of the interaction between rock and dowels on walls of an underground excavation where potentially sliding rock blocks are present. The assumed interaction scheme is, however, partial in that dowel reinforcement is only activated by a small displacement, while this displacement does not induce a destressing of the rock block. Such a procedure allows a fast dimensioning of the dowels, considering the maximum stabilizing force that they are able to apply to the block without reaching a critical condition with reference to dowel failure or to its connection to the rock. Correspondence: Dr. Pierpaolo Oreste, Politecnico di Torino, DITAG, C. so Duca degli Abruzzi 24, 10129 Torino, Italy  相似文献   

14.
《Applied Geochemistry》2002,17(6):781-792
Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of ‘bomb’ 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th /234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95±0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10±0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean=0.94±0.07). These data indicate that 234U has been removed from the rock samples in the last ∼350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock. More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable.  相似文献   

15.
Drilling and blasting is a major technology in mining since it is necessary for the initial breakage of rock masses in mining. Only a fraction of the explosive energy is efficiently consumed in the actual breakage and displacement of the rock mass, and the rest of the energy is spent in undesirable effects, such as ground vibrations. The prediction of induced ground vibrations across a fractured rock mass is of great concern to rock engineers in assessing the stability of rock slopes in open pit mines. The waveform superposition method was used in the Gol-E-Gohar iron mine to simulate the production blast seismograms based upon the single-hole shot vibration measurements carried out at a distance of 39 m from the blast. The simulated production blast seismograms were then used as input to predict particle velocity time histories of blast vibrations in the mine wall using the universal distinct element code (UDEC). Simulated time histories of particle velocity showed a good agreement with the measured production blast time histories. Displacements and peak particle velocities were determined at various points of the engineered slope. The maximum displacement at the crest of the nearest bench in the X and Y directions was 26 mm, which is acceptable in regard to open pit slope stability.  相似文献   

16.
 Deep-well injection has been used to dispose of municipal liquid wastes in southwestern Florida since 1988. The liquid wastes are injected into an extremely high-transmissivity zone of fractured dolomite in the Early Eocene Oldsmar Formation of the Floridan aquifer system; this zone is commonly referred to as the Boulder Zone. Data collected during the drilling and operational testing of southwestern Florida injection wells provide insights into the nature of the injection zone and overlying confining beds. The location of high-transmissivity zones that are capable of accepting large quantities of waste water is vertically and horizontally variable and cannot be predicted with certainty. A 40.9-m thick high-permeability interval in one injection well, for example, was absent in a well drilled only 85.4 m away. Some upward migration of low-density injected fluids has occurred, but at no site were the injected liquids detected in deep monitor wells, such as occurred at injection-well sites along the coasts of southeastern, west-central, and east-central Florida. The primary confinement of the injected liquids (i.e., deepest effective confining beds) consists of unfractured beds of low-permeability dolomite within the Oldsmar Formation, whose locations are also laterally and vertically variable. The origin and controls of the distribution of fractures in the Oldsmar Formation are poorly understood. Received, December 1997 Revised, June 1998, August 1998 Accepted, August 1998  相似文献   

17.
Unusual circumstances may require that a longwall retreat into or through a previously driven room. The operation can be completed successfully, but there have been a number of spectacular failures. To help determine what factors contribute to such failures, a comprehensive international database of 131 case histories has been compiled. The cases include six failures where major rock falls occurred in front of the shields, and seven even more serious failures involving major overburden weighting. The case studies suggest two types of room failure mechanism. The first is a roof fall type failure caused by loading of the immediate roof at the face as the fender or remnant longwall panel narrows. The second is an overburden weighting type failure caused by the inability of the roof to bridge the recovery room and face area, and affecting rock well above the immediate roof. The data indicate that the roof fall type of failure is less likely when intensive roof reinforcement (bolts, cables and trusses) is employed together with higher-capacity shields. The overburden weighting failures, in contrast, occurred when the roof was weak and little standing support was used. Weighting failures were not greatly affected by the density of roof reinforcement. In one of the overburden weighting cases, in a Pittsburgh coalbed mine, stress cell, convergence, bolt load and extensometer data have been used to analyze the failure in detail.  相似文献   

18.
含砂岩石是发生突水溃砂灾害前在高位关键层形成的特殊岩石,其强度与力学性质均与普通岩石不同,决定着高位关键层的稳定性。研究发现:不同裂隙角的裂隙岩石与含砂岩石具有不同的特征应力,且随着裂隙角的增加,裂隙岩石与含砂岩石的起裂应力、损伤应力和峰值应力均增加,双峰应力先增加后减小。相同裂隙角下的含砂岩石各特征应力均小于裂隙岩石,说明砂体对岩石特征应力具有弱化效应。从破坏形态来看,裂隙岩石易呈现翼形拉伸裂隙,含砂岩石在低裂隙角(30°)条件下形成拉伸裂隙,高裂隙角(60°)条件下易形成剪切裂隙,表明砂体进入岩石裂隙后对岩石具有剪切效应。同时建立了充砂力学模型,指出了含砂岩石强度小于裂隙岩石的原因是砂体降低了岩石的摩擦系数。根据声发射累计振铃计数定义了岩石损伤量并分析了含砂岩石致灾机制,现场溃砂灾害可分为4个阶段:弹性变形阶段、裂隙扩展阶段、蓄砂储能阶段、溃砂释能阶段。最后利用PFC2D验证了裂隙岩石与含砂岩石的差异性,分析了不同类型岩石的能量演化规律。研究结果可作为煤矿顶板突水溃砂现象的前兆信息识别,有助于指导突水溃砂工作面的安全生产。  相似文献   

19.
锚网(索)支护煤巷顶板离层临界值分析   总被引:4,自引:0,他引:4  
顶板离层是开采过程中巷道矿压显现的主要表现形式之一。离层值的大小不仅和煤层赋存条件及开采技术条件等自然因素有关,而且和巷道的尺寸、支护方式以及支护强度等直接相关。在深入分析现场顶板离层监测手段和所存问题的基础上,对锚网巷道、锚网锚索联合支护巷道的顶板离层临界值进行了系统的分析。  相似文献   

20.
Summary A ground convergence-support reaction analysis is extended to the case of an opening excavated in horizontally layered strata. Simplifying assumptions include linear elastic behaviour and classical beam theory. The method is used to demonstrate the influence on bolt loads of a number of factors including the timing of support installation, failure of the roof, number, thicknesses and flexibilities of the rock layers, type of rock bolt, bolt spacings, bolt lengths, roof span, and roof beam thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号