首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Interface Region Imaging Spectrograph (IRIS) is a NASA small explorer mission that provides high-resolution spectra and images of the Sun in the 133?–?141 nm and 278?–?283 nm wavelength bands. The IRIS data are archived in calibrated form and made available to the public within seven days of observing. The calibrations applied to the data include dark correction, scattered light and background correction, flat fielding, geometric distortion correction, and wavelength calibration. In addition, the IRIS team has calibrated the IRIS absolute throughput as a function of wavelength and has been tracking throughput changes over the course of the mission. As a resource for the IRIS data user, this article describes the details of these calibrations as they have evolved over the first few years of the mission. References to online documentation provide access to additional information and future updates.  相似文献   

2.
The mission Gaia by European Space Agency (ESA) is expected to fly at the end of 2011 and to perform an all-sky, magnitude-limited survey for 5 years. The probe will not use an input catalogue, and will get high accuracy astrometry and photometry for all sources of magnitude V<20. Low-resolution spectra will also be available. Moving Solar System objects will be observed as well, and their observations will be processed by a specific pipeline in order to retrieve the physical and dynamical characteristics of each object. In this contribution we will mainly focus on the impact of Gaia observations on asteroid dynamics. A dramatic improvement of orbital elements is expected, as well as the measurement of subtle effects such as those related to general relativity (GR). Gaia observations will also be supported by a network of ground-based observation sites, capable of providing follow-up for newly discovered objects that will not receive an adequate coverage from space. Specific strategies for follow-up are being planned and tested. These will need to take into account the peculiar observing geometry (large parallax effect due to the orbit of Gaia around L2) and the time constraints dictated by data processing.  相似文献   

3.
The space experiment Gaia, the approved cornerstone 6 ESA mission, will observe up to a billion stars in our Galaxy and obtain their astrometric positions on a micro-arcsec level, multi-band photometry as well as spectroscopic observations. It is expected that about one million Eclipsing Binaries (EBs) (with V ≤ 16 mag) will be discovered and the observing fashion will be quite similar to Hipparcos/Tycho mission operational mode. The combined astrometric, photometric and spectroscopic data will be used to compute the physical parameters of the observed EBs. From a study of a small sample of EBs, it is shown that the agreement between the fundamental stellar parameters, derived from ground-based and Hipparcos (Gaia-like) observations, is more than satisfactory and the Gaia data will be suitable to obtain accurate binary solutions.  相似文献   

4.
The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.  相似文献   

5.
The forthcoming Herschel space mission will provide an unprecedented view of the far-infrared/submillimetre Universe, with the SPIRE instrument covering the 200–670 μm wavelength range. To obtain the best quality of astronomical data from such an expensive mission the observing modes must be optimized as far as possible. This paper presents the possible scanning strategies that can be utilized by the SPIRE photometer, within the limitations imposed by the Herschel spacecraft. Each strategy is investigated for effectiveness by performing simulated observations, using the SPIRE photometer simulator. By quantifying the data quality using a simple metric, we have been able to select the optimum scanning strategy for SPIRE when it begins taking science data within the next couple of years.
Additionally, this work has led to the development of a specific SPIRE mapmaking algorithm, based on the CMB code MADmap, to be provided as part of the SPIRE data pipeline processing suite. This will allow every SPIRE user to take full advantage of the optimized scan map strategy, which requires the use of maximum likelihood mapmakers such as MADmap.  相似文献   

6.
From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small‐scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal‐poor stars, and allow for studies of heavy elements (Z ≥ 38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal‐poor stars. This means that some elements cannot be studied in the visual‐redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. It is therefore important that the next generation of spectrographs are designed such that they cover a wide wavelength range and can observe a large number of stars simultaneously. Only then, we can gain the full information from stellar spectra, from both metal‐poor to metal‐rich ones, that will allow us to understand the aforementioned formation scenarios in greater detail. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi‐object spectrograph commissioned for the ESO VISTA 4 m‐telescope. While 4MOST is also intended for studies of active galactic nuclei, baryonic acoustic oscillations, weak lensing, cosmological constants, supernovae and other transients, we focus here on high‐density, wide‐area survey of stars and the science that can be achieved with high‐resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high‐resolution spectrograph, we find that a sampling of ≥2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393–436 nm, is the most well‐balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (±0.1 dex) in the blue and allow us to confront the outlined scientific questions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
8.
The proposed global astrometry mission GAIA , recently recommended within the context of ESA's Horizon 2000 Plus long-term scientific programme, appears capable of surveying the solar neighbourhood within ∼200 pc for the astrometric signatures of planets around stars down to the magnitude limit of V =17 mag, which includes late M dwarfs at 100 pc.
Realistic end-to-end simulations of the GAIA global astrometric measurements have yielded the first quantitative estimates of the sensitivity to planetary perturbations and of the ability to measure their orbital parameters. Single Jupiter-mass planets around normal solar-type stars appear detectable out to 150 pc ( V ≤12 mag) with probabilities ≥50 per cent for orbital periods between ∼2.5 and ∼8 yr, and their orbital parameters are measurable with better than 30 per cent accuracy to about 100 pc. Jupiter-like objects (same mass and period as our giant planet) are found with similar probabilities out to 100 pc.
These first experiments indicate that the GAIA results would constitute an important addition to those that will come from the other ongoing and planned planet-search programmes. These data combined would provide a formidable testing ground on which to confront theories of planetary formation and evolution.  相似文献   

9.
Far-ultraviolet photometric data for early type stars in Orion, in the 1050–1180 and 1230–1350 Å wavelength ranges, were obtained in an Aerobee rocket flight on 30 January 1969. The results corrected for interstellar extinction, appear in good agreement with model atmospheres in the case of main-sequence stars. Bright giant and supergiant stars, however, appear to be up to one magnitude fainter than main-sequence stars of similar spectral class in the 1050–1180 Å range.The present results indicate that the detectors used in a previous flight were lower in sensitivity than was thought, so the results from that flight have been corrected using the present data for stars in common with the previous flight.The far-ultraviolet extinction law for Orionis is shown to be abnormal, with the observed extinction far less than predicted on the basis of ultraviolet extinction measurements of other stars, and the observedE(B-V).  相似文献   

10.
The ESA Gaia mission will bring a new era to the domain of standard candles. Progresses in this domain will be achieved thanks to unprecedented astrometric precision, whole-sky coverage and the combination of photometric, spectrophotometric and spectroscopic measurements. The fundamental outcome of the mission will be the Gaia catalogue produced by the Gaia Data Analysis and Processing Consortium (DPAC), which will contain a variable source classification and specific properties for stars of specific variability types. We review what will be produced for Cepheids, RR Lyrae, Long Period Variable stars and eclipsing binaries.  相似文献   

11.
We employ an Artificial Neural Network (ANN) based technique to develop a pipeline for automated segregation of stars from the galaxies to be observed by Tel-Aviv University Ultra-Violet Experiment (TAUVEX). We use synthetic spectra of stars from UVBLUE library and selected International Ultraviolet Explorer (IUE) low-resolution spectra for galaxies in the ultraviolet (UV) region from 1250 to 3220 Å as the training set and IUE low-resolution spectra for both the stars and the galaxies as the test set. All the data sets have been pre-processed to get band integrated fluxes so as to mimic the observations of the TAUVEX UV imager. We also perform the ANN based segregation scheme using the full length spectral features (which will also be useful for the ASTROSAT mission). Our results suggest that, in the case of the non-availability of full spectral features, the limited band integrated features can be used to segregate the two classes of objects; although the band data classification is less accurate than the full spectral data classification.  相似文献   

12.
Star‐to‐star variations in abundances of the light elements carbon, nitrogen, oxygen, and sodium have been observed in stars of all evolutionary phases in all Galactic globular clusters that have been thoroughly studied. The data available for studying this phenomenon, and the hypotheses as to its origin, have both co‐evolved with observing technology; once high‐resolution spectra were available even for main‐sequence stars in globular clusters, scenarios involving multiple closely spaced stellar generations enriched by feedback from moderate‐ and high‐mass stars began to gain traction in the literature. This paper briefly reviews the observational history of globular cluster abundance inhomogeneities, discusses the presently favored models of their origin, and considers several aspects of this problem that require further study (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The space mission COROT (to be launched in 2002) will continuously monitor the flux of a number of stars during 150 days periods with a very high photometric accuracy. One of its objectives is the detection of extra-solar planets by looking for their transits in front of the disk of several tens thousand stars. COROT accommodates a 25 cm telescope with low straylight, and 4 2048×2048 CCDs, 2 of which monitoring 5000 to 12000 stars simultaneously up to mv= 16.5. The stability and noise performances should make easy the detection of Jupiter-like planets and possible the detection of Earth-like planets with radius 1.5R. Under study is a dispersive system that will allow to retrieve some chromatic information : this could be essential to discriminate actual transit events against stellar fluctuations that would mimic a transit and to identify properly the events occurring in binary stars. The mission, the instrument and the results of simulations are presented, together with a discussion on the number of expected events : the multiple ones with a short orbital period signature, or the single or double events identified by their (a)chromatic signature. The later ones may lead to the discovery of planets in the habitable zone.  相似文献   

14.
High‐fidelity spectroscopy presents challenges for both observations and in designing instruments. High‐resolution and high‐accuracy spectra are required for verifying hydrodynamic stellar atmospheres and for resolving intergalactic absorption‐line structures in quasars. Even with great photon fluxes from large telescopes with matching spectrometers, precise measurements of line profiles and wavelength positions encounter various physical, observational, and instrumental limits. The analysis may be limited by astrophysical and telluric blends, lack of suitable lines, imprecise laboratory wavelengths, or instrumental imperfections. To some extent, such limits can be pushed by forming averages over many similar spectral lines, thus averaging away small random blends and wavelength errors. In situations where theoretical predictions of lineshapes and shifts can be accurately made (e.g., hydrodynamic models of solar‐type stars), the consistency between noisy observations and theoretical predictions may be verified; however this is not feasible for, e.g., the complex of intergalactic metal lines in spectra of distant quasars, where the primary data must come from observations. To more fully resolve lineshapes and interpret wavelength shifts in stars and quasars alike, spectral resolutions on order R = 300 000 or more are required; a level that is becoming (but is not yet) available. A grand challenge remains to design efficient spectrometers with resolutions approaching R = 1 000 000 for the forthcoming generation of extremely large telescopes (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
For 77 main-sequence F–G stars in the solar neighborhood with published iron, magnesium, and europium abundances determined from high-dispersion spectra and with the ages estimated from theoretical isochrones, we calculated the spatial velocities using Hipparcos data and the Galactic orbital elements. A comparison with the orbital elements of the globular clusters that are known to have been accreted by our Galaxy in the past reveals stars of extragalactic origin. We show that the abundance ratios of r-and α-elements in all the accreted stars differ sharply from those in the stars that are genetically associated with the Galaxy. According to current theoretical models, europium is produced mainly in low-mass type-II supernovae (SNe II), while magnesium is synthesized in large quantities in high-mass SN II progenitors. Since all the old accreted stars of our sample exhibit a significant Eu overabundance relative to Mg, we conclude that the maximum masses of the SN II progenitors outside the Galaxy were much lower than those inside it. On the other hand, only a small number of young accreted stars exhibit low negative ratios [Eu/Mg]<0. This can be explained by the delay of primordial star formation and the explosions of high-mass SNe II in a relatively small part of extragalactic space. We provide evidence that the interstellar medium was weakly mixed at the early evolutionary stages of the Galaxy formed from a single protogalactic cloud, and that the maximum mass of the SN II progenitors increased in it with time simultaneously with the increase in mean metallicity.  相似文献   

16.
From radar images of Mercury's poles and MESSENGER Neutron Spectrometer (NS) measurements obtained during the spacecraft's flybys of Mercury, predictions of neutron count rates and their uncertainties are calculated for Mercury's north polar region as of the end of the MESSENGER primary orbital mission. If Mercury's poles contain large amounts of water ice, as has been suggested on the basis of the radar data, then during the one-year-long orbital mission the NS should detect signals indicative of excess polar hydrogen with a significance of at least 4σ, where σ is the standard deviation derived from Poisson counting statistics. If the polar deposits are not enriched with hydrogen, but are dominated by other elements, such as sulfur, then the MESSENGER neutron measurements should be able to confirm the absence of deposits having surface concentrations in excess of 50 wt% H2O on permanently shadowed floors of craters near Mercury's north pole. Because of the large spatial footprint of the NS data, individual polar deposits will not be spatially resolved, but longitudinal asymmetries may be detected if residual systematic uncertainties are sufficiently low.  相似文献   

17.
Sozzetti  A.  Spagna  A.  Lattanzi  M.G. 《Earth, Moon, and Planets》1998,81(1):103-104
We present a selection of results obtained with detailed simulations reproducing the process of data acquisition and analysis for the global astrometry satellite GAIA, a space mission concept currently under study by ESA as part of Horizon 2000 Plus program.Limits on distance for pure detection and significant orbital parameters estimation of Jupiter-mass and Jupiter-like planets around solar-type stars in the neighborhood of our sun are derived.  相似文献   

18.
The precision of lunar gravity field estimation has improved by means of three to five orders of magnitude since the successful GRAIL lunar mission. There are still discrepancies however, in the low degree coefficients and long wavelength components of the solutions developed by two space research centers (JPL and GSFC). These discrepancies hint at the possibilities for improving the accuracy in the long wavelength part of the lunar gravity field. In the near future, China will launch the Chang’E-5 lunar mission. In this sample-return mission, there will be a chance to do KBRR measurements between an ascending module and an orbiting module. These two modules will fly around lunar at an inclination of ~49 degrees, with an orbital height of 100 km and an inter-satellite distance of 200 km. In our research, we simulated the contribution of the KBRR tracking mode for different GRAIL orbital geometries. This analysis indicated possible deficiencies in the low degree coefficient solutions for the polar satellite-to-satellite tracking mode at various orbital heights. We also investigated the potential contributions of the KBRR to the Chang’E-5 mission goal of lunar gravity field recovery, especially in the long wavelength component. Potential improvements were assessed using various power spectrums of the lunar gravity field models. In addition, we also investigated possible improvements in solving lunar tidal Love number K2. These results may assist the implementation of the Chang’E-5 mission.  相似文献   

19.
After the Beagle-2 lander of the Mars Express mission comes to rest on the surface of Isidis Planitia in late December 2003 to carry out a range of geochemistry and exobiology experiments, there will be considerable interest in determining its exact location. This work considers the feasibility of identifying topographic features seen in the Mars Global Surveyor MOLA dataset in images of the horizon returned by the lander, and the probability of observing lesser features identifiable in orbital imagery. By taking bearings from such features, and attempting to match the configuration back to the available data, it may be possible to determine the spacecraft's position with high precision. Since the MOLA data is fairly coarse compared to the area of the landing ellipse, the range of visibility and likelihood of observation of each of the resolved craters in the area is considered. For the more numerous smaller craters and many small knobs a probabilistic view is taken.  相似文献   

20.
Space-based observatories have several advantages over ground-based observatories in searching for asteroids and comets. In particular, the Aten and Interior to Earth’s Orbit (IEO) asteroid classes may be efficiently sought at low solar elongations along the ecliptic plane. A telescope in low Earth orbit has a sufficiently long orbital baseline to determine the parallax for all Aten and IEO class asteroids discovered with this observing strategy. The Near Earth Object Space Surveillance Satellite (NEOSSat) mission will launch a microsatellite to exploit this observing strategy complementing ground-based search programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号