首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
谢欣  陶爱峰  张尧  李硕  时健  郑金海 《海洋通报》2019,38(2):167-172
现行的海浪危险性评估方法仅以波高作为指标,没有考虑波浪周期对海上建筑物和船舶航行安全的影响。基于1979-2016年福建外海海浪数值后报结果,建立了基于周期的海浪强度和危险性等级划分标准,提出了基于波高和周期双指标的福建海域海浪危险性分析方法。结果表明,双指标下海浪危险等级分布结合了波高单指标下环状分布和周期单指标下带状分布的特点,以台湾海峡中南部海域海浪危险等级最高,闽南近岸海域海浪危险等级高于闽东和闽中海域,总体危险等级分布呈现南高北低的特征;双指标下的福建外海海浪危险等级分布比单指标考虑更为全面,不仅包含波高对结构物的影响还考虑了周期对浮式结构物和防波堤的作用,更加贴近真实情况下的海浪危险性特征。  相似文献   

2.
印尼沿岸易受气旋生浪和咆哮西风带产生的涌浪的侵蚀,但其海浪发展及传播机理尚不明确,给海岸工程建设和防护带来极大困扰。本文基于第三代海浪模式WAVEWATCH Ⅲ,采用CCMP交叉校正多平台海洋表面V2.0风场(Cross-Calibrated Multi-Platform Ocean Surface Wind Velocity)作为驱动风场,建立自整个印度洋至印尼沿岸的三级嵌套海浪模型,模拟咆哮西风带及热带气旋作用下印尼沿岸灾害性海浪,并研究其海浪分布及传播特性。结果表明:(1)咆哮西风带单独作用下,印尼沿岸盛行南向海浪,有效波高等值线沿东北方向平行递减,海浪谱为多峰,西南向涌浪占主导地位,能量集中分布于60°—90°范围,呈现北传特性;(2)咆哮西风带和热带气旋联合作用下,气旋路径左侧出现涌浪低值区,东南向风浪主导,风浪能量集中分布于110°—130°范围,路径右侧西北向风浪和南向涌浪并存,60°—90°附近涌浪波动能量占主导,风浪能量集中在210°附近;近岸浅水海域涌浪能量主导,开敞海域涌浪能量集中在60°—90°范围,有掩护海域涌浪能量峰值位于0°附近。  相似文献   

3.
结合东北太平洋浮标资料,使用神经网络模型对WAVEWATCHⅢ海浪模式模拟的有效波高进行训练模拟,并与增加风场作为输入项的神经网络模型作了对比分析。通过分析浮标观测资料、WAVEWATCHⅢ数值模式和神经网络模拟的海浪有效波高大小,可以看出使用神经网络结合数值模式能够较好地提高有效波高的模拟精度。  相似文献   

4.
WAVEWATCH Ⅲ不同海冰源项的海浪模拟效果对比   总被引:1,自引:0,他引:1  
为了验证第三代海浪模式WAVEWATCH Ⅲ V5.16中不同海冰损耗源项在秋季波弗特海对海冰存在下海浪的模拟能力,建立自波弗特海至马更些河河口的两级嵌套海浪模型,对2014年8月1日至9月31日该海域北极风暴作用下的暴风浪有效波高进行模拟研究,并利用浮标实测数据对模拟结果进行对比分析。结果表明,在应用于大范围海域、缺乏海冰有效剪切模量、黏性系数等属性参数的前提下,离海冰较近、海浪能量受海冰控制作用较为明显的区域,各海冰源项中IC1源项表现最好,能够表现出更加符合波弗特海海域特定的冰情、冰况的能量耗散特征。  相似文献   

5.
针对海浪资料同化中预报误差的统计性质难以确定的问题,利用WAVEWATCHⅢ和Topex/Posei-don(T/P)有效波高观测资料,对东中国海区的有效波高预报误差进行了统计分析。结果表明,预报误差符合正态分布;不同网格点的预报误差协方差随距离增长呈指数关系递减,并且空间上表现出弱各向异性;在预报模式空间网格为0.5°×0.5°条件下相关距离为3.0°~5.9°。  相似文献   

6.
闻斌  于福江  程明  孙龙 《海洋预报》2007,24(3):6-15
本文应用WAVEWATCHⅢ海浪模式,进行全球海浪数值预报试验,通过同期TOPEX/Poseidon卫星观测有效波高的检验,获得令人满意的结果。在模式移植时采用多种优化处理,有效地节约了机时,为我国的全球海浪数值预报业务化打下基础。  相似文献   

7.
设计了一系列理想的数值实验,利用高分辨率的WAVEWATCHIII海浪模式定量分析热带气旋移动速度、强度、最大风速半径和热带气旋移动时的转向等风场细节因素对热带气旋下表面海浪分布特征的影响。实验结果表明,热带气旋移动速度、最大风速半径和热带气旋移动时的转向会影响海浪的空间非对称分布。最大风速半径增大会使最大有效波高的位置向后移动,而移动速度增大会使最大有效波高位置向前移动。移动速度增大会使右侧象限内的有效波高增大,左侧象限内有效波高减小。最大风速半径增大和强度增强使各象限内有效波高均增高。热带气旋的转向使各象限内有效波高增高,除了右后象限。这些风场特征对各个象限内海浪的平均波长、平均周期、平均波向、和波峰方向都有很重要的影响,尤其以左后象限最为显著。  相似文献   

8.
采用第三代海浪模式WAVEWATCH Ⅲ-SWAN三层嵌套以及SWAN三层自嵌套两种方式建立两套烟台市北部近岸海域的海浪数值模拟系统,利用ERA-Interim再分析风场对几次大浪过程进行后报,对比分析两种嵌套方式的模拟效果,以选取更适合烟台近岸海域海浪数值模拟的嵌套方案.结果表明:两种嵌套方案模拟的有效波高在空间分布...  相似文献   

9.
中国海1997年海浪灾害分析及 1998年海浪灾害预测   总被引:3,自引:2,他引:3  
许富祥 《海洋通报》1999,18(1):58-62
本文主要分析了1997年中国近海海浪灾害及灾害性海浪的特征,并对1998年中国海灾害性海浪出现天数进行了预测,以供沿海地区及从事海洋开发,渔业、交通运输等事业和企业部门参考。  相似文献   

10.
刘子龙  史剑  蒋国荣 《海洋科学》2017,41(3):122-129
基于海浪模式WAVEWATCH Ⅲ模拟北太平洋海浪要素,结合NDBC浮标资料进行验证,发现模拟出的有效波高与浮标测量值具有很好的一致性。基于改进型白冠覆盖率耗散模型,利用海浪模式模拟出的有效波高、有效波周期和摩擦速度等海浪要素计算出单位面积水柱内因海浪破碎产生的湍动能通量。通过改变环流模式sbPOM湍动能方程的上边界条件,引入海浪破碎产生的湍动能通量,并探究海浪破碎对北太平洋海表面温度模拟的影响。研究表明,由于海浪破碎的引入,环流模式sbPOM对北太平洋海表面温度模拟的准确程度得到提升,这为大气模式提供一个准确的北太平洋下边界条件具有重要意义。  相似文献   

11.
中国大陆沿岸波浪能分布初步研究   总被引:2,自引:1,他引:1  
波浪能作为可持续利用的清洁能源,日益被人们所关注,本文基于WAVEWATCHⅢ全球波浪模式,建立了较高精度的中国沿岸海域波浪数学模型,重点对中国大陆沿岸-30m等深线上的波浪能分布进行了研究,在已有研究成果的基础上进一步细化了中国沿岸海域波浪能的时空分布规律,为合理开发、利用波浪能提供了一定的数据支持。研究认为,中国沿岸波浪能储量相对较小,南北分布以长江口为界,以南海域波能整体较大,波能季节性差异明显,在开发利用时,需要对工程区域的波浪能特征充分论证,科学合理地选用波浪能转化设备,防止造成巨大经济损失。  相似文献   

12.
总结分析了2012年中国近海有效波高≧4 m的灾害性海浪过程及灾情概况,并对2012年度的预测结果进行了检验评估。依据1968—2012年有效波高≧4 m的灾害性海浪的统计资料,结合2013年副热带高压及热带风暴的分析预测资料,预测了2013年中国近海灾害性海浪过程的出现次数,以及分海区的出现天数,预测结果可为今年的海洋防灾减灾提供技术支持。  相似文献   

13.
基于ADCIRC模型,建立了1套适用于舟山市普陀区的高分辨率风暴潮漫滩数值模式,对历史上影响该海域最严重的台风——9711号"维尼"进行风暴潮过程模拟,结果与实测吻合良好。以9711号台风路径为基础,构造了对普陀区沿海最有利增水的台风路径,并设定了5个不同强度的天气系统,充分考虑海堤对风暴潮淹没的影响,模拟得到了不同强度等级下普陀沿海风暴潮的最大可能淹没范围。结果表明,将风暴增水叠加到当地的天文高潮位上时,普陀区本岛区域和六横岛地区都存在着风暴潮淹没风险,水位均超过了当地的警戒潮位线,由于其近岸区海堤内的高程普遍较低,一旦出现海水漫堤的情况,将在普陀主城镇区发生大面积的淹没,淹没水深最大达2.5m左右,淹没面积达到26km2。  相似文献   

14.
中国近海2011年灾害性海浪分析及2012年预测   总被引:1,自引:0,他引:1  
李本霞  邢闯 《海洋预报》2012,29(3):20-25
总结分析了2011年中国近海有效波高为4 m以上的灾害性海浪过程及灾情概况,并对本年度的预测结果进行了检验评估。依据1968—2011年有效波高≧4 m的灾害性海浪的统计资料,结合2012年副热带高压及热带风暴的分析预测资料,预测了2012年中国近海灾害性海浪过程的出现次数,以及分海区的出现天数,预测结果可为今年的海洋防灾减灾提供技术支持。  相似文献   

15.
山东省海洋自然灾害综合危险性评估研究   总被引:1,自引:0,他引:1  
山东省海洋自然灾害类型多、发生频率高、活动强度大、影响范围广,研究以山东省5种主要海洋自然灾害为评估对象,依据区域灾害评估系统理论,基于叠加分析原理建立包括风暴潮、海浪、海冰、海平面上升和海啸等5种灾害的海洋自然灾害综合危险性评估体系,采用层次分析方法确定各灾种的权重系数,并据此对海洋灾害综合危险进行等级划分。结果表明,山东省沿海4个区县处于高危险区, 6个区县处于较高危险区, 9个区县处于中危险区, 17个区县处于低危险区。本方法克服了单一灾种评估方法的局限性和片面性,使评估结果更加科学、合理,且方法可行,评估结果能够为山东省的海洋经济建设布局、海洋资源开发和规划、海洋防灾减灾等工作提供科学依据。  相似文献   

16.
利用1991—2010年的NCEP再分析风场驱动LAGFD-WAM海浪数值模式,通过数值后报方法,对海南万宁近海海域近20年的波浪场进行了逐时数值模拟,数值模拟结果和实测结果对比的一致性良好。在数值后报数据的基础上计算了万宁近海波浪能流密度和能流密度变异系数,并对其年内变化特点、区域分布特征和稳定性进行了分析。万宁近海年均波浪能流密度3—10 k W/m,属于波浪能资源可利用区和较丰富区。年内各月月均能流密度差别较大,12月波浪能资源最好,5月波浪能资源最差。秋季(9—11月)和冬季(12—2月)月均波浪能流密度分别为5—24 k W/m和6—29 k W/m,春季(3—5月)和夏季(6—8月)分别为3—7 k W/m和1—6 k W/m。地形对波浪能量的辐聚作用明显,受岬角、岛屿、海底陡坡等因素影响,大洲岛、白鞍岛周边、大花角附近及白鞍岛以北部分近岸区域形成波浪能富集区。除9月外,年内其他时段能流密度变异系数都在2.8以下,9月能流密度变异系数在3.0—5.9之间。  相似文献   

17.
集合最优插值方法在北印度洋海浪同化中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
基于第三代海浪模式WaveWatch III,采用集合最优插值(EnOI)方法对北印度洋海浪进行同化数值实验研究。在集合样本选取方案上,针对不同的实验分别选取有效波高(SWH)的历史后报场(样本A)、24h变化(样本B)以及以同一时刻72h预报时效和24h预报时效的差异(样本C)用于估计背景误差协方差。样本A和样本B是为海浪模拟而设计,样本C是为海浪预报而设计;通过与由高度计数据确定的模式背景误差进行比较,认为样本B优于样本A。采用样本B对2011年北印度洋海浪场进行同化模拟,结果表明2011-03-11相对误差改进都在5%及以上,其中7月份改进效果最佳。采用样本C对2013-07的有效波高进行0~72h预报,发现同化使0~24h预报改进最明显:均方根误差改进0.12m,相对误差改进5%。浮标检验结果支持上述结论。  相似文献   

18.
基于第三代海浪模式WaveWatchⅢ和Swan,采用四重网格嵌套建立了黄海、南海近海海浪的高精度数值预报系统,以及青岛第一海水浴场、广西北海银滩浴场、海南三亚亚龙湾海水浴场3个示范区近岸定点海浪的精细化数值预报系统。通过后报和预报试验对所建立的数值预报系统进行了系统的检验,后报波高与实测值吻合较好。准业务化预报试验表明有效波高的预报精度随预报时效的增加而降低,近海海浪大于2 m的平均预报相对误差小于30%。浴场海浪的平均预报绝对误差为0.35 m左右。预报精度可以满足业务化预报的要求。  相似文献   

19.
台湾海峡及近岸区域精细化海浪数值预报系统   总被引:1,自引:0,他引:1  
基于第三代海浪模式,采用四重嵌套网格,建立了WaveWatchⅢ和SWAN嵌套(方案一)和SWAN自嵌套(方案二)两套台湾海峡及其近岸区域海浪预报系统.通过对一次台风过程3天和7天的海浪预报实验,对两套预报系统作了检验.结果表明,方案一的3天和7天的预报误差分别为14.78%和19.53%,方案二的分别为10.38%和15.85%.两套系统的预报精度均能达到海浪精细化业务化预报要求.  相似文献   

20.
文章基于近岸海洋数值模式ADCIRC (a parallel advanced circulation model for oceanic, coastal and estuarine waters)和近海波浪数值模式SWAN (simulating waves nearshore), 建立雷州市高分辨率的风暴潮-海浪耦合漫滩数值模型, 并反演了对雷州市影响较为严重的1415号台风“海鸥”的风暴潮过程。经过对比分析得出, 波浪对雷州市沿海海域的风暴潮产生重要影响。然后以8007号台风路径为基础, 构造了7个不同等级共35组台风风暴潮案例, 计算分析出不同等级台风强度下雷州市风暴潮淹没范围及水深。900hPa等级下, 雷州市淹没面积达到463.2km2。文章还构造了60组可能最大风暴潮事件集, 计算得到雷州市可能最大台风风暴潮淹没范围及水深分布。在可能最大台风影响下, 大量海水将漫过海堤, 造成极其严重的淹没灾害, 雷州市总的淹没面积可达602.0km2, 其中465.8km2的淹没面积达到了危险性等级 Ⅰ 级, 淹没水深大于3m。雷州市东岸的淹没灾害大于西岸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号