首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Warming trend in northern East China Sea in recent four decades   总被引:2,自引:0,他引:2  
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957–1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46°C higher during the period of 1977-19...  相似文献   

2.
Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows: 1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38℃/10 yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.  相似文献   

3.
The control mechanisms of topography on alpine treeline pattern are critical to understanding treeline dynamics and future changes. These mechanisms have not been understood quite well enough because of increasing human disturbance and low data resolution. In this study, the relationship between the treeline pattern and topography was analyzed based on high spatial resolution remote sensing data and a digital elevation model in an area in Changbai Mountain with little human disturbance. Future treeline patterns were also predicted. The results showed that(a) aspects with high solar radiation and low snow cover have a high coverage rate of trees,(b) the peak coverage rate of trees switches from low slopes(5°) to medium slopes(5°~25°) as the elevation rises because of the extreme environment,(c) the coverage rate of trees is a function that depends on environmental factors controlled by topography,(d) the future treeline pattern is controlled by new temperature mechanisms, new environmental factors and the reallocation effect of topography. Our research implies that topography controls the treeline pattern and changes in the treeline pattern associated with global warming, due to the effect of global warming on environmental factors. This study may well explain the causes of heterogeneous changes in the treeline pattern in the horizontal direction as well as differences in treeline response to climate warming.  相似文献   

4.
This study aims to find the altitudinal distribution pattern of vascular plant species reported from high mountain of Nepal(Manang) along the whole Himalayan elevation gradient, and evaluate their fate against climate change. Data was gathered from multiple sources, field investigations, literatures, and herbarium specimens. Altogether, 303 vascular plant species were reported from Manang. We used a published data to calculate distribution range of each species by interpolating between its upper and lower elevation limits. The relationship between elevation and species richness is elucidated by generalized linear model. The consequence of global warming upon Manang's vascular plant species was estimated based on projected temperature change for next century and adiabatic lapse rate along the elevation gradient of the Himalayas. The vascular plant species richness has a unimodel relationship with elevation along the whole elevation gradient of Nepal as well as in three biogeographical regions of Nepal. Vascular plants of Manang are found distributed from low land Terai to high alpine regions of Nepal and their elevation distribution range varies from 200 to 4700 m. Out of 303 vascular plants of Manang, only seven species might be affected if temperature increase by 1.5°C, whereas at least 70 species will be affected with 5°C temperature increased. However, the majority of species(233 species) have wider distribution range( 1000 m) and more than 5°C temperature tolerance range, thus they are likely to be less affected from global warming by the end of 21 st century.  相似文献   

5.
Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming   总被引:2,自引:1,他引:2  
Using satellite-observed Normalized Difference Vegetation Index (NDVI) dada and station-observed surface air temperature anomalies for the Northern Hemisphere (NH), we analyze the spatio-temporal characteristics of vege- tation variations in the Qinghai-Tibet Plateau and their correlations with global warming from 1982 to 2002. It is found that the late spring and early summer (May-June) are the months with the strongest responses of vegetation to global warming. Based on the Rotated Empirical Orthogonal Function (REOF) method, the study shows that the first REOF spatial pattern of average NDVI for May-June reveals the northern and southern zones with great inter-annual variations of vegetation, the northern zone from the eastern Kunlun Mountains to the southwestern Qilian Mountain and southern zone from the northern edge of the Himalayas eastward to the Hengduan Mountains. The vegetation, especially grassland, in the two zones increases significantly with global warming, with a correlation coefficient of 0.71 between the first REOF of May-June vegetation and the April-May surface air temperature anomaly in the NH during 1982-2002. A long-term increasing trend in May-June vegetation for the plateau region as a whole is also attributed mainly to global warming although there are considerable regional differences. The areas with low NDVI (grassland and shrubland) usually respond more evidently to global warming, especially since the 1990s, than those with moderate or high NDVI values.  相似文献   

6.
Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11°C/decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7°C/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamflow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5% 40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.  相似文献   

7.
The permafrost along the China-Russia Crude Oil Pipeline(CRCOP) is degrading since the pipeline operation in 2011. Heat dissipated from the pipeline, climate warming and anthropogenic activities leads to permafrost warming. The processes of permafrost warming along the CRCOP were studied based on the monitoring of air and soil temperatures, and electrical resistivity tomography(ERT) surveys. Results show that:(1) the mean annual air temperature(MAAT) in permafrost regions along the CRCOP increased with a rate of 0.21°C/10a–0.40°C/10 a during the past five decades;(2) the mean annual ground temperature(MAGT, at-15 m depth) of undisturbed permafrost increased by 0.2°C and the natural permafrost table remained unchanged due to the zero-curtain effect;(3) permafrost surrounding the uninsulated pipeline right-of-way warmed significantly compared with that in a natural site. During 2012–2017, the MAGT and the artificial permafrost table, 2 m away from the pipeline centerline, increased at rates of 0.063°C/a and 1.0 m/a. The thaw bulb developed around the pipe and exhibits a faster lateral expansion;(4) 80-mm-thick insulation could reduce the heat exchange between the pipeline and underlying permafrost and then keep the permafrost and pipe stable. The MAGT and the artificial permafrost table, 4.8 m away from the center line of the pipeline, increased by 0.3°C/a and 0.43 m/a, respectively. Due to the heat disturbance caused by warm oil, the degradation of wetland, controlled burn each autumn and climate warming, the permafrost extent reduced and warmed significantly along the CRCOP route. Field observations provide basic data to clarify the interactions between CRCOP and permafrost degradation and environmental effects in the context of climate change.  相似文献   

8.
Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau   总被引:3,自引:1,他引:2  
In this study, surface air temperature from 75 meteorological stations above 3000 m on the Tibetan Plateau are applied for evaluation of the European Centre for Medium-Range Weather Forecasts(ECMWF) third-generation reanalysis product ERA-Interim in the period of 1979-2010. High correlations ranging from 0.973 to 0.999 indicate that ERA-Interim could capture the annual cycle very well. However, an average root-meansquare error(rmse) of 3.7°C for all stations reveals that ERA-Interim could not be applied directly for the individual sites. The biases can be mainly attributed to the altitude differences between ERA-Interim grid points and stations. An elevation correction method based on monthly lapse rates is limited to reduce the bias for all stations. Generally, ERA-Interim captured the Plateau-Wide annual and seasonal climatologies very well. The spatial variance is highly related to the topographic features of the TP. The temperature increases significantly(10°C- 15°C) from the western to the eastern Tibetan Plateau for all seasons, in particular during winter and summer. A significant warming trend(0.49°C/decade) is found over the entire Tibetan Plateau using station time series from 1979-2010. ERA-Interim captures the annual warming trend with an increase rate of 0.33°C /decade very well. The observation data and ERA-Interim data both showed the largest warming trends in winter with values of 0.67°C/decade and 0.41°C/decade, respectively. We conclude that in general ERA-Interim captures the temperature trends very well and ERA-Interim is reliable for climate change investigation over the Tibetan Plateau under the premise of cautious interpretation.  相似文献   

9.
The global climate is intimately connected to changes in the polar oceans. The variability of sea ice coverage affects deep-water formations and large-scale thermohaline circulation patterns. The polar radiative budget is sensitive to sea-ice loss and consequent surface albedo changes. Aerosols and polar cloud microphysics are crucial players in the radioactive energy balance of the Arctic Ocean. The main biogenic source of sulfate aerosols to the atmosphere above remote seas is dimethylsulfide (DMS). Recent research suggests the flux of DMS to the Arctic atmosphere may change markedly under global warming. This paper describes climate data and DMS production (based on the five years from 1998 to 2002) in the region of the Barents Sea (30–35°E and 70–80°N). A DMS model is introduced together with an updated calibration method. A genetic algorithm is used to calibrate the chlorophyll-a (CHL) measurements (based on satellite SeaWiFS data) and DMS content (determined from cruise data collected in the Arctic). Significant interannual variation of the CHL amount leads to significant interannual variability in the observed and modeled production of DMS in the study region. Strong DMS production in 1998 could have been caused by a large amount of ice algae being released in the southern region. Forcings from a general circulation model (CSIRO Mk3) were applied to the calibrated DMS model to predict the zonal mean sea-to-air flux of DMS for contemporary and enhanced greenhouse conditions at 70–80°N. It was found that significantly decreasing ice coverage, increasing sea surface temperature and decreasing mixed-layer depth could lead to annual DMS flux increases of more than 100% by the time of equivalent CO2 tripling (the year 2080). This significant perturbation in the aerosol climate could have a large impact on the regional Arctic heat budget and consequences for global warming.  相似文献   

10.
Liu  Zenghong  Chen  Xingrong  Sun  Chaohui  Wu  Xiaofen  Lu  Shaolei 《中国海洋湖沼学报》2017,35(3):712-721
Satellite SST(sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System(AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST(near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature(~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed(5 m/s) and columnar water vapor 28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.  相似文献   

11.
Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation(IPO).Based on observations and model simulations,another afteref fect of global warming on IPO is found.After removing linear trends(global warming signals)from observations,however,the tropical Pacific climate still exhibited some obvious dif ferences between two IPO negative phases.The boreal winter(DJF)equatorial central-eastern Pacific sea surface temperature(SST)was colder during the 1999–2014 period(P2)than that during 1961–1976(P1).This diff erence may have been a result of global warming nonlinear modulation of precipitation;i.e.,in the climatological rainy region,the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the"wet-get-wetter"mechanism.Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1,even after subtracting the linear trend.Corresponding to the dif ferences of precipitation,the Pacific Walker circulation is stronger in P2 than in P1.Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern–central Pacific during P2.Therefore,tropical Pacific climate dif ferences between the two negative IPO phases are afteref fects of global warming.These afteref fects are supported by the results of coupled climate model experiments,with and without global warming.  相似文献   

12.
This study analyzes six vegetation communities in relation to current climatic parameters and eight climate change scenarios along an elevation gradient extending from 2,710 m to 4,210m in the Trans-Mexican Volcanic Belt. The projected movements of 25 plant species with the current restricted or wide altitudinal distributions were also modeled. To relate climatic parameters to the species and communities, a Precipitation/Temperature(P/T)index was used both for the current and the different climate-change scenarios. The temperatures are expected to increase by 1.1°C to 1.7°C by 2020 and by2°C to 3°C by 2050. A decrease of 4% to 13% in the annual precipitation is expected for the 2020 horizon,and a reduction between 3% and 20% is expected for2050. The reductions in water availability were projected for all altitude levels and plant communities.The most marked reduction was under the HADLEYA2 scenario, in which the lower limit of the altitudinal range increased from 2,710 to 3,310 m(2050 horizon)with reductions in the P/T index between 36% and39% compared to the current climate. Most plant species tended to shift their distribution from 200 to300 m upward in the 2020 temporal horizon scenarios. The Pinus hartwegii, Alnus jorullensis and Pinus montezumae communities would have a shorter altitudinal range as they move upward and merge with the remaining species at the higher altitudinal range. For the 2050 temporal horizon,30% of the species, primarily those from the higher altitudinal range, would disappear because their P/Tindex values would be above the limit of plant survival(4,210 m).  相似文献   

13.
The decomposition of plant litter is a key process in the flows of energy and nutrients in ecosystems. However, the response of litter decomposition to global climate warming in plateau wetlands remains largely unknown. In this study, we conducted a one-year litter decomposition experiment along an elevation gradient from 1891 m to 3260 m on the Yunnan Plateau of Southwest China, using different litter types to determine the influences of climate change, litter quality and microenvironment on the decomposition rate. The results showed that the average decomposition rate(K) increased from 0.608 to 1.152, and the temperature sensitivity of litter mass losses was approximately 4.98%/℃ along the declining elevation gradient. Based on a correlation analysis, N concentrations and C︰N ratios in the litter were the best predictors of the decomposition rate, with significantly positive and negative correlations, respectively. Additionally, the cumulative effects of decomposition were clearly observed in the mixtures of Scirpus tabernaemontani and Zizania caduciflora. Moreover, the litter decomposition rate in the water was higher than that in the sediment, especially in high-elevation areas where the microenvironment was significantly affected by temperature. These results suggest that future climate warming will have significant impacts on plateau wetlands, which have important functions in biogeochemical cycling in cold highland ecosystems.  相似文献   

14.
With the enhanced warming and acidification of global ocean, whether and to what extent the naturally-weathered fluvial sediment into the sea can release elements and thus influence the geochemical pro...  相似文献   

15.
By using,summer temperature data in 26 stations from 1951 to 2003, the variation characteristics of summer temperature in Northeast China (NET) were analyzed based on the background of climate wanning. The results showed that the warming in summer was 0.15~C/10a in Northeast China, which was higher than that on the global, Northern Hemisphere or Northeast Asia scale in the recent 50 years. The responses of NET to global warming were shown in 3 aspects mainly. Firstly, it became warm and the average temperature increased in summer; secondly, the temperature variability increased, which displayed the increase of climatic instability; thirdly, the disaster of low temperature decreased and high temperature damage increased obviously, but the disaster of low temperature still existed in some areas under global warming background, which would be worthy of notice further.  相似文献   

16.
Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models, the Asian summer mon-soon (ASM) response to CO2 doubling and the different responses among models are examined. Nine models show the similar results that the weakening of land-ocean thermal contrast caused by the CO2 doubling contributes to a weaker large-scale ASM circulation. Further analysis in this study also shows that the major ASM components,such as the Somali cross-equatorial flow,the low level India-South China Sea monsoon trough,and the upper level tropical easterly jet stream, weaken as CO2 doubles.However,the ASM rainfall increases as a result of the increased moisture from the warmer Indian Ocean and the South China Sea, and the enhanced northward moisture transport over the ASM region.For the response of enhanced northward moisture transport over South Asia, the positive contribution of moisture content increase in the Indian Ocean is dominant and the negative contribution of the weaker mon-soon circulation is secondary at 850 hPa,but both have positive contribution to the total moisture transport along the East China coast.The paradox of the weaker ASM circulation and the increasing precipitation in CO2 doubling is confirmed.It is found that strengthening of northward moisture transport could intensify the precipitation and atmospheric heat source over the north Arabian Sea and East China,and result in enhanced southwesterly at 850 hPa as global warming occurs.All ten models show significant enhanced southwesterly response over the north Arabian Sea,and six of them show enhanced southwesterly response along the East China coast.  相似文献   

17.
Glacier is a common sensitivity indicator of environmental and global climate change.Examining the relationship between glacier area and climate change will help reveal glacier change mechanisms and future trends. Glacier changes are also of great significance to the regulation of regional water resources. This study selected the Hala Lake Basin in the northeastern Qinhai-Tibet Plateau as a study area, and examined the relationships between the temporal and spatial change of glaciers in the northeastern Qinghai-Tibet Plateau and climate change based on remote sensing imagery,climatological data, and topographic data during the past 30 years. Results showed that glacier area in the Hala Lake basin fluctuated and decreased from106.24 km~2 in 1986 to 78.84 km~2 in 2015, with a decreasing rate of 0.94 km~2·yr~(-1). The number of glacier patches, mean patch area, and largest patch index all decreased from 1986 to 2015, while the splitting index increased from 1986 to 2015,indicating that the landscape fragmentation of glacier in the Hala Lake Basin was increasing significantly during the study period. Glacier area change was mainly concentrated in the slopes 25° with an altitude of 4500-5000 m, and the retreating rate of glacier of sunny slope was obviously higher than that of shady slope. Geometric center of glacier in the basin moved from southwest to northeast towards high altitude. Results of the response of glacier extent to climate change showed that temperature was the dominant factor affecting glacier area dynamic change in the Hala Lake Basin. It is predicted that in future several years, the glacier area will decrease and fragment continually as a result of global warming on the Tibetan Plateau.  相似文献   

18.
Future temperature distributions of the marginal Chinese seas are studied by dynamic downscaling of global CCSM3 IPCC_AR4 scenario runs.Different forcing fields from 2080-2099 Special Report on Emissions Scenarios(SRES) B1,A1,and A2 to 1980-1999 20C3M are averaged and superimposed on CORE2 and SODA2.2.4 data to force high-resolution regional future simulations using the Regional Ocean Modeling System(ROMS).Volume transport increments in downscaling simulation support the CCSM3 result that with a weakening subtropical gyre circulation,the Kuroshio Current in the East China Sea(ECS) is possibly strengthened under the global warming scheme.This mostly relates to local wind change,whereby the summer monsoon is strengthened and winter monsoon weakened.Future temperature fluxes and their seasonal variations are larger than in the CCSM3 result.Downscaling 100 years’ temperature increments are comparable to the CCSM3,with a minimum in B1 scenario of 1.2-2.0°C and a maximum in A2 scenario of 2.5-4.5°C.More detailed temperature distributions are shown in the downscaling simulation.Larger increments are in the Bohai Sea and middle Yellow Sea,and smaller increments near the southeast coast of China,west coast of Korea,and southern ECS.There is a reduction of advective heat north of Taiwan Island and west of Tsushima in summer,and along the southern part of the Yellow Sea warm current in winter.There is enhancement of advective heat in the northern Yellow Sea in winter,related to the delicate temperature increment distribution.At 50 meter depth,the Yellow Sea cold water mass is destroyed.Our simulations suggest that in the formation season of the cold water mass,regional temperature is higher in the future and the water remains at the bottom until next summer.In summer,the mixed layer is deeper,making it much easier for the strengthened surface heat flux to penetrate to the bottom of this water.  相似文献   

19.
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.  相似文献   

20.
Global climate change has a wide range of impacts, and this paper presents an investigation on how global warming has changed the relationship between air temperature and latitude & altitude using the meteorological data obtained from 160 stations in China. The investigation indicates that there are very distinct seasonal differences in patterns of temperature variation as a function of latitude and altitude: a very significant latitude effect in winter and a very significant altitude effect in summer. However, with global warming, the latitude effect in winter is weakening and the altitude effect in summer is strengthening. This pattern of change in the relationship between temperature and latitude & altitude is helpful in efforts to reconstruct and explain the past temperature patterns and variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号