首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Concerns about the water–energy–food (WEF) nexus have motivated many discussions regarding new approaches for managing water, energy and food resources. Despite the progress in recent years, there remain many challenges in scientific research on the WEF nexus, while implementation as a management tool is just beginning. The scientific challenges are primarily related to data, information and knowledge gaps in our understanding of the WEF inter-linkages. Our ability to untangle the WEF nexus is also limited by the lack of systematic tools that could address all the trade-offs involved in the nexus. Future research needs to strengthen the pool of information. It is also important to develop integrated software platforms and tools for systematic analysis of the WEF nexus. The experience made in integrated water resources management in the hydrological community, especially in the framework of Panta Rhei, is particularly well suited to take a lead in these advances.  相似文献   

2.
流域综合管理方法与技术   总被引:13,自引:2,他引:13  
流域作为一个具有明确边界的地理单元,流域以水为纽带,将上、中、下游组成一个普遍具有因果联系的复合生态系统,是实现资源和环境管理的最佳单元.流域综合管理已经被认为是实现资源利用和环境保护相协调的最佳途径.然而,由于流域综合管理涉及多学科,多部门,内容非常广泛.近年的流域管理还主要停留在一个目标.本文在流域模拟管理研究及实践的相关经验基础上,系统地讨论了流域综合管理实施方法、关键技术以及主要技术问题.  相似文献   

3.
ABSTRACT

Concerns about the water–energy–food (WEF) nexus have motivated many discussions regarding new approaches for managing water, energy and food resources. Despite the progress in recent years, there remain many challenges in scientific research on the WEF nexus, while implementation as a management tool is just beginning. The scientific challenges are primarily related to data, information and knowledge gaps in our understanding of the WEF inter-linkages. Our ability to untangle the WEF nexus is also limited by the lack of systematic tools that could address all the trade-offs involved in the nexus. Future research needs to strengthen the pool of information. It is also important to develop integrated software platforms and tools for systematic analysis of the WEF nexus. The experience made in integrated water resources management in the hydrological community, especially in the framework of Panta Rhei, is particularly well suited to take a lead in these advances.  相似文献   

4.
Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.  相似文献   

5.
The institutional evolution is often induced by some factors. This paper intends to analyze the affecting factors in integrated urban and rural water affairs management reform in China. The integrated urban and rural water affairs management reform is to restructure the governmental organizational setting in water management by forms of water affair bureau or re-designing functions of current water resources bureau to incorporate part or all functions of resources management, service regulation and environment management in water sector. The analyses selected some natural and socio-economic factors. The results point out that the integrated urban and rural water affairs management reform is a factor-induced institutional evolution. The factors promoting this reform include occasional drought events, higher central water investment percentage; but the data from the urban sector do not provide the support to the reform.  相似文献   

6.
Energy and water are scarce resources and understanding the complicated energy–water nexus is an important issue for effective resource management. The purpose of this research was to analyze the competitive and cooperative relationships involving energy and water production and use. Specifically, tradeoff and integrated management of hydropower generation and water supplies are analyzed for energy–water systems. A Nash–Cournot model was established to analyze strategic behaviors among participants in energy–water systems. In the model, tradeoff analysis and integrated management of hydropower and water supplies were simulated for a reservoir system. In addition, hydropower and thermal power generation in competitive energy markets was examined. A case study of Dajia River reservoirs in the Tai-Chung and Chang-Hwa energy–water systems is presented. Dajia River is the second longest river in central Taiwan; the reservoirs system of Dajia River generates hydropower with installed capacity of 1150 MW. Strategic competitive and cooperative behaviors regarding energy–water linkage were quantified in the results. The results show that integrated management of hydropower and water supplies can increase renewable energy production, lower electricity equilibrium price, and decrease carbon dioxide emission.  相似文献   

7.
Institutional conditions for IWRM: the Israeli case   总被引:3,自引:1,他引:2  
Many places in the world are experiencing a water crisis. This water crisis is attributed to a governance crisis, whereas often fragmented institutional and physical water structures are used to explain a policy of overexploitation. The Israeli water system, which adopted integrated water resource management (IWRM), is often cited as a model for other countries struggling with fragmented water systems. Yet, despite the exceptional degree of integration, Israel in the past two decades has adopted an unsustainable water policy. The aim of this study is to understand this failure and thereby to postulate on the institutional conditions required for successful implementation of IWRM. The study focuses on the politics of water allocation during the drought of 1999 to 2002. It was found that the failure originates in setting administrative divisions in the decision-making process and in differential checks, with no balances implicitly instituted within the integrated water system. These two factors have resulted in a water system that is physically integrated but is not coupled by a balanced institutional structure. This case study teaches us that when reforming the water sector along IWRM lines, measures must be taken to ensure that the physical integration coincides with a balanced institutional integration-otherwise the results may be worse than if there were no integration at all.  相似文献   

8.
Hydrological effects of groundwater abstraction near a Danish river valley have been assessed by integrated hydrological modelling. The study site contains groundwater‐dependent terrestrial ecosystems in terms of fen and spring habitats that are highly dependent on regional and local scale hydrology. Fens are rare and threatened worldwide due to pressures from agriculture, to lack of appropriate management and to altered catchment hydrology. A solid foundation for hydrological modelling was established based on intensive monitoring at the site, combined with full‐scale pumping tests in the area. A regional groundwater model was used to describe the dynamics in groundwater recharge and the large‐scale discharge to streams. A local grid refinement approach was then applied in a detailed assessment of damage in order to balance the computational effort and the need for a high spatial resolution. A considerable flow reduction in the natural spring was monitored during a full‐scale pumping test while no significant effects on the water table in the fen habitats were observed. A modelled abstraction scenario predicted a lowering of 2–3 cm in the centre of the main fen area during summer periods. The predicted change in water table conditions in the fen habitat is compared to the variability found in 35 Danish fens, and the ecological response is discussed based on statistical water‐level vegetation relations. The results provide a rare quantitative foundation for decision making in relation to management of groundwater‐dependent terrestrial ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray–Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.  相似文献   

10.
太湖与长三角区域一体化发展:地位、挑战与对策   总被引:1,自引:0,他引:1  
陈雯  刘伟  孙伟 《湖泊科学》2021,33(2):327-335
太湖及太湖流域在长三角自然和经济地理空间具有举足轻重的地位,更是长三角区域一体化发展国家战略实施的关键地区.在当前区域一体化高质量发展背景下,太湖治理面临新的形势和任务,也面临一系列新的挑战,着重体现在水环境治理形势更加复杂严峻和水资源供给压力不断提升两方面.传统水陆分割治理难以解决湖泊问题,行政区治理难以适应区域一体...  相似文献   

11.
River regulation and river training have been performed for various purposes and negative effects have been shown in numerous cases. In some cases the negative effects are so serious that humans have to consider to "renaturalize" the regulated rivers. Only by using the strategy of integrated river management the diverse river uses and natural fluvial processes and ecological systems may be harmonized. Based on analysis of case studies and data collected from literatures this paper presents the concept of integrated river management and four principles of river training. The integrated river management comprises: 1) taking the watershed, upper stream basin including the tributaries, middle and lower reaches and the estuary as an integrated entity in the planning, design and management; and 2) mitigating or controlling the negative impacts on hydrology, erosion and sedimentation, fluvial processes, land use and river use, environment and ecology while in achieving economic benefit from water resources development, flood safety management and hydropower exploitation. River training and management should be in accordance with the four principles: 1) extending the duration of river water flowing on the continent, which may be achieved by extending the river course or reducing the flow velocity; 2) controlling various patterns of erosions and reducing the sediment transportation in the rivers; 3) increasing the diversity of habitat and enhancing the connectivity between the river and riparian waters; and 4) restoring natural landscapes.  相似文献   

12.
Over the past decades, a number of water sciences and management programs have been developed to better understand and manage the water cycles at multiple temporal and spatial scales for various purposes, such as ecohydrology,global hydrology, sociohydrology, supply management, demand management, and integrated water resources management(IWRM). At the same time, rapid advancements have also been taking place in tracing, mapping, remote sensing, machine learning, and modelling technologies in hydrological research. Despite those programs and advancements, a water crisis is intensifying globally. The missing link is effective interactions between the hydrological research and water resource management to support implementation of the UN Sustainable Development Goals(SDGs) at multiple spatial scales. Since the watershed is the natural unit for water resources management, watershed science offers the potential to bridge this missing link.This study first reviews the advances in hydrological research and water resources management, and then discusses issues and challenges facing the global water community. Subsequently, it describes the core components of watershed science:(1)hydrological analysis;(2) water-operation policies;(3) governance;(4) management and feedback. The framework takes into account water availability, water uses, and water quality; explicitly focuses on the storage, fluxes, and quality of the hydrological cycle; defines appropriate local water resource thresholds through incorporating the planetary boundary framework; and identifies specific actionable measures for water resources management. It provides a complementary approach to the existing water management programs in addressing the current global water crisis and achieving the UN SDGs.  相似文献   

13.
Abstract

In many of the world’s river basins, the water resources are over-allocated and/or highly modified, access to good quality water is limited or competitive and aquatic ecosystems are degraded. The decline in aquatic ecosystems can impact on human well-being by reducing the ecosystem services provided by healthy rivers, wetlands and floodplains. Basin water resources management requires the determination of water allocation among competing stakeholders including the environment, social needs and economic development. Traditionally, this determination occurred on a volumetric basis to meet basin productivity goals. However, it is difficult to address environmental goals in such a framework, because environmental condition is rarely considered in productivity goals, and short-term variations in river flow may be the most important driver of aquatic ecosystem health. Manipulation of flows to achieve desired outcomes for public supply, food and energy has been implemented for many years. More recently, manipulating flows to achieve ecological outcomes has been proposed. However, the complexity of determining the required flow regimes and the interdependencies between stakeholder outcomes has restricted the implementation of environmental flows as a core component of Integrated Water Resources Management (IWRM). We demonstrate through case studies of the Rhône and Thames river basins in Europe, the Colorado River basin in North America and the Murray-Darling basin in Australia the limitations of traditional environmental flow strategies in integrated water resources management. An alternative ecosystem approach can provide a framework for implementation of environmental flows in basin water resources management, as demonstrated by management of the Pangani River basin in Africa. An ecosystem approach in IWRM leads to management for agreed triple-bottom-line outcomes, rather than productivity or ecological outcomes alone. We recommend that environmental flow management should take on the principles of an ecosystem approach and form an integral part of IWRM.

Editor D. Koutsoyiannis

Citation Overton, I.C., Smith, D.M., Dalton J., Barchiesi S., Acreman M.C., Stromberg, J.C., and Kirby, J.M., 2014. Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrological Sciences Journal, 59 (3–4), 860–877.  相似文献   

14.
As an integrated result of many driving factors, significant declines in streamflow were observed in many rivers of the Loess Plateau (NW China). This can aggravate the inherent severe water shortages and threatens the regional development. Therefore, it is urgent to develop adaptive measures to regulate the water yield to ensure water security. A key step for successful implementation of such measures is to separate the response of water yield to the main driving factors of land management and climate change. In this study, the variation of annual streamflow, precipitation, potential evapotranspiration, and climatic water balance in a small catchment in the Loess Plateau (near Pingliang, Gansu province) was examined for over five decades, although the relative contribution of changes in land management and climate on the streamflow reduction were estimated. A statistically significant decreasing trend of ‐1.14 mm y‐1 in annual streamflow was detected. Furthermore, an abrupt streamflow reduction because of construction of terraces and check‐dams was identified around 1980. Remarkably, 74% of the total reduction in mean annual streamflow can be attributed to the soil conservation measures. Based on a literature review across the Loess Plateau, we found that the impact of changes in land management and climate on annual streamflow diminished with increasing catchment size. This means that there is a dependency on catchment size for the hydrological response to environmental change. This indicates that at least at the local scale well‐considered land management may help ensure the water security at the Loess Plateau. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Mathematical modeling technique plays an important role for regionalization assessment of integrated economy and environment problems, resulting in provision of decision makers with break-through insights and risk-informed strategies. However, such a planning effort is complicated with a variety of uncertain and dynamic factors as well as their interactions. In this study, a fuzzy-chance constrained programming (FCP) method is firstly developed for addressing uncertainties characterized as fuzzy sets and random variables and, then, minimax regret (MMR) analysis technique is advanced to determine desired alternative that can reflect compromises between maximized system benefit and minimized system-failure risk. FCP coupled with MMR is applied to a real-case study of water quality management through optimizing chemical industry activities of the New Binhai District, an economically and industrially fast growing region in the center of northern China. Modeling formulation can analyze interactions among criteria of industry layout, economic benefit, pollution mitigation, and water quality security. Solutions for planning the water quality management have been generated, reflecting that there is trade-off among industrial structure, environmental protection, and economic development.  相似文献   

16.
The political dimension of water becomes highly important not only because of its scarcity, but also as a result of its sharing across national boundaries. Approximately 40% of the global population lives in transboundary water basins, 55% of which are located in Europe, emphasizing the need for cooperation and harmonization of policies. In order to better handle major water problems Europe have adopted the new EU Water Framework Directive 2000/60 the implementation of which is further discussed. Especially in Greece, management of transboundary rivers is of major importance, since roughly 25% of the country’s renewable resources are “imported”. However, lack of integrated approaches and legal agreements as well as administrative shortcomings, make transboundary cooperation and management a hard task. This study refers to 4 shared basins in Northern Greece and demonstrates the problems that occur for their sustainable management.  相似文献   

17.
Central Asia is one of the regions with the highest probability of conflicts over water. Kazakhstan is the main Central Asian economic power and therefore it is important to understand how the country’s water management policy is influencing water availability in the other Central Asian states. Already, the Central Asian economies are developing under increasing water deficiency, resulting in developmental problems. The main reasons for this are increasing political tensions and worsening ecological and socio-economic conditions. Kazakhstan was the first country in Central Asia to develop the pre-requisites for a transition towards integrated water resources management (IWRM). Therefore, Kazakhstan has potential to lead the development of transboundary water integration between all Central Asian states. A scenario for successful regional cooperation on water management in Central Asia involves establishing legal mechanisms for water management following international water law, assistance by international agencies and donors, and integrated social, economic and environmental methodology.  相似文献   

18.
South America is experiencing rapid change in forest cover, of both native and planted forest. Forest cover loss is primarily attributable to fire, logging, and conversion of native forest to agriculture, pasture, and forest plantations, and types of change vary within and among the many diverse types of forests in South America. Major changes in forest cover and growing policy concerns underscore an urgent need for research on sustainable forest management and water ecosystem services in South America. Differences in land ownership and management objectives create trade‐offs between wood production and water ecosystem services from forests. Work is needed to quantify how forest change and management affect ecosystem services, such as wood production versus water provision. Current scientific understanding of forest management effects on water ecosystem services in South America has important limitations, including a scarcity of long‐term records and few long‐term integrated watershed studies. Industry, government, universities, and local communities should collaborate on integrated applied studies of forests and water. Data archiving and publically available data are required. The creation of national networks and a multi‐country South America network to identify and implement common water research protocols, share results, and explore their implications would promote common and well‐supported policies. Hydrologists working in South America are well placed to tackle the challenges and opportunities for collaborative research that will maintain the intrinsic values and water ecosystem services provided by South America's forests.  相似文献   

19.
This paper proposed to provide valuable information for integrated water resources management through evaluating the research on the interaction mechanism among land use changes, regional hydrological ecosystem services and human well-being. Firstly, the driving mechanism of land use and land cover changes was introduced in this paper. Secondly, the overview of the interaction mechanism among land use and land cover changes, regional hydrological ecosystem services and human well-being was given. Based on the meta-analysis, land use changes have a profound influence on regional hydrological ecosystem services, and the variation of hydrological ecosystem could benefit or impair human well-being. Finally, two suggestions were emphasized for managers or policy makers for the future integrated water resources management: (1) Proper land use makes for the water resource management; (2) Blindly pursuing the provisioning services weakens other services of hydrological ecosystem.  相似文献   

20.
Abstract

Groundwater is an important water resource and its management is vital for integrated water resources development in semiarid catchments. The River Shiyang catchment in the semiarid area of northwestern China was studied to determine a sustainable multi-objective management plan of water resources. A multi-objective optimization model was developed which incorporated water supplies, groundwater quality, ecology, environment and economics on spatial and temporal scales under various detailed constraints. A calibrated groundwater flow model was supplemented by grey simulation of groundwater quality, thus providing two lines of evidence to use in the multi-objective water management. The response matrix method was used to link the groundwater simulation models and the optimization model. Multi-phase linear programming was used to minimize and compromise the objectives for the multi-period, conjunctive water use optimization model. Based on current water demands, this water use optimization management plan was able to meet ecological, environmental and economic objectives, but did not find a final solution to reduce the overall water deficit within the catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号