首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
ASAS J174406+2446.8 was originally found as a δ Scuti-type pulsating star with the period P=0.189068 d by ASAS survey.However,the LAMOST stellar parameters reveal that it is far beyond the red edge of pulsational instability strip on the log g-T diagram of δ Scuti pulsating stars.To understand the physical properties of the variable star,we observed it by the 1.0-m Cassegrain reflecting telescope at Yunnan Observatories.Multi-color light curves in B,V,R_c and I_c bands were obtained and are analyzed by using the W-D program.It is found that this variable star is a shallow-contact binary with an EB-type light curve and an orbital period of 0.3781 d rather than a δ Scuti star.It is a W-subtype contact binary with a mass ratio of 1.135(±0.019) and a fill-out factor of 10.4%(±5.6)%.The situation of ASAS J174406+2446.8 resembles those of other EB-type marginal-contact binaries such as UU Lyn,Ⅱ Per and GW Tau.All of them are at a key evolutionary phase from a semi-detached configuration to a contact system predicted by the thermal relaxation oscillation theory.The linear ephemeris was corrected by using 303 new determined times of light minimum.It is detected that the O-C curve shows a sinusoidal variation that could be explained by the light-travel-time effect via the presence of a cool red dwarf.The present investigation reveals that some of the δ Scuti-type stars beyond the red edge of pulsating instability strip on the log g-T diagram are misclassified eclipsing binaries.To understand their structures and evolutionary states,more studies are required in the future.  相似文献   

2.
BH Cen is a short-period early-type binary with a period of 0.792 din the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A_3 = 0.024 d and a period of P_3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer.The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of˙M_2 = 2.8×10~(-6) M_⊙per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M_⊙at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.  相似文献   

3.
New light curves and photometric solutions of FP Lyn, FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries. In addition, it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric. Therefore, a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa. At the same time, we added a third light to the photometric solution of FP Lyn for the final result. The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn, q = 1.075 and f = 4.6% for FV CVn, and q = 3.623 and f = 10.7% for V354 UMa respectively. The investigations of orbital period for these three systems indicate that the periods are variable. FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 × 10~(-7) d yr~(-1) and dp/dt = 7.70 × 10~(-7) d yr~(-1) respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component. In addition, some variable components were discovered for FV CVn, including a rate of dp/dt =~(-1).13 × 10~(-6) d yr~(-1) accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively. The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.  相似文献   

4.
1RXS J201607.0+251645 is identified as an eclipsing binary. We present preliminary observations in the V band with the 0.6-m telescope for three years and extensive observations in the V and R bands with the 0.8-m telescope for six nights, respectively. The light curve of the system is E13 type. Five light minimum times were obtained and the orbital period of 0.388058^d(±0.00044d) is determined. The photometric solution given by the 2003-version of the Wilson-Devinney program suggests that the binary is a semidetached system with photometric mass ratio 0.895(±0.006), which is probably comprised of a G5 primary and an oversized K5 secondary. The tess massive component has completely filled its Roche lobe, while the other one almost fills its Roche lobe with a filling factor of 93.4%. The system shows a varying O'Connell effect in its phase folded diagrams from 2005 to 2007, and is X-ray luminous with log Lx/Lbol - -3.27. Possible mechanisms to account for these two phenomena are discussed. Finally, we infer that the binary may be in thermal oscillation or may evolve into a contact binary.  相似文献   

5.
The new complete BV Rc Ic light curves and spectra of the short-period eclipsing binary XZ CMi are presented. The results from the combined analysis based on the photometric and spectroscopic data show that XZ CMi is a near contact binary with the secondary component filling its critical Roche lobe while the primary filling 91% of its Roche lobe. The investigation of the O-C diagram reveals that its orbital period is continuously increasing, which is consistent with the derived configuration and caused by the mass transfer from the less massive star to the more massive one. In addition, an obvious periodic modulation with the amplitude of0.0187(±0.0016) d and a high eccentric of 0.86(±0.04) is detected, which could be the results of the light time effect as a third star with the mass no less than 0.42(±0.09) M⊙orbiting around the central eclipsing binary once every 95.7(±2.1) yr. Furthermore, we found a visual companion star at 2.4′′ east by south of this system at a much greater distance by direct image. The large third light contribution found from the light curve analysis could be well explained by the existence of the third star and the fourth visual one.The similar parallax and proper motion imply that the components of this hierarchical quadruple system might be bounded by gravitation. Spectroscopic observations for two visual components were carried out by the LAMOST and 2.16 m telescopes, respectively. Their different values of [Fe/H] suggest that they were not born from the same origin. Thus, XZ CMi system is an interesting and important target to study the formation of the multiple stars.  相似文献   

6.
We present a study on pulsations of the high-amplitudeδScuti star YZ Boo based on photometric observations in Johnson V and R bands with both the Nanshan 1-m telescope of Xinjiang Astronomical Observatory(XAO)and the Xinglong 85-cm telescope of National Astronomical Observatories,Chinese Academy of Sciences(NAOC).Fourier analysis of the light curves reveals the fundamental radial mode and its five harmonics,with the fourth and fifth being newly detected.Thirtynine new times of maximum light are determined from the light curves,and combined with those in the literature,we construct the O-C diagram,derive a new ephemeris and determine a new value for the updated period of 0.104091579(2).In addition,the O-C diagram reveals an increasing rate of period change for YZ Boo.Theoretical models are calculated and constrained with the observationally determined parameters of YZ Boo.The mass and age of YZ Boo are hence derived as M=1.61±0.05 M_⊙ and age=(1.44±0.14)×10~9 yr,respectively.With both the frequency of the fundamental radial mode and the rate of period change,YZ Boo is located at the post main sequence stage.  相似文献   

7.
We utilize the PAdova and TRieste Stellar Evolution Code(PARSEC) combined with photometric observations to determine a guaranteed mass of AL Cas and re-examine its related physical parameters.Multicolor-photometric observations of AL Cas have been performed in 2016 and 2017. We use the WilsonDevinney(W-D) code to analyze the light curves and find that AL Cas is probably an A-subtype contact binary(f = 35.7±0.9%) with a mass ratio q = 0.6399±0.0230 and an effective temperature difference?T = 78 K. The mass-radius relation of a higher luminosity component for AL Cas is obtained by two methods: depending on calculation of the Roche lobe(DCRL method) and depending on calculation of the W-D code(DCWD method). Using this relationship with the PARSEC model, we investigate the component masses of AL Cas as M_1 = 1.19±0.23 M_⊙ with M_2 = 0.76±0.18 M_⊙ by the DCRL method and M_1 = 1.22±0.26 M_⊙ with M_2 = 0.78±0.20 M ⊙ by the DCWD method. By means of the photometric studies, we examine the related physical properties of AL Cas with the latest findings. We update the orbital period(Porb = 0.50055593 d) of AL Cas according to six new times of light minimum together with those collected from the literature. Meanwhile, the(O-C)_2 curve analysis suggests that the orbital period of AL Cas has a cyclic variation with a period of 81.25 yr and an amplitude of 0.01415 d. This cyclic change would be caused by the light-travel time effect from a third body. A similar mass of the third body(M_3 sin i′= 0.279 M_⊙) is derived from our two methods.  相似文献   

8.
We carry out a re-analysis of the photometric data in R_cI_c bands which were taken during the Nainital Microlensing Survey from 1998 to 2002 with the aim to detect gravitational microlensing events in the direction of M31. Here, we do photometric analysis of a faint W UMa binary CSS_J004259.3 +410629 identified in the target field. The orbital period of this star is found to be 0.266402±0.000018 d.The photometric mass ratio, q,is found to be 0.28 ± 0.01. The photometric light curves are investigated using the Wilson-Devinney(WD) code and absolute parameters are determined using empirical relations which provide masses and radii of the binary as M_1 = 1.19 ± 0.09 M_☉,M_2 = 0.33 ± 0.02 M_⊙ and R_1=1.02±0.04 R_⊙,R_2 = 0.58 ±0.08 R_⊙ respectively based on R_c band data. Quite similar values are found by analyzing I_c band data. From the photometric light curve examination, the star is understood to be a low mass-ratio overcontact binary of A-subtype with a high fill-out factor of about 47%. The binary system is found to be located approximately at a distance of 2.64 ± 0.03 kpc having a separation of 2.01 ± 0.05 R_⊙ between the two components.  相似文献   

9.
XB 1254–690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining a more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply, for the first time, an orbital timing technique to XB 1254–690, using the arrival times of the dips present in the light curves that have been collected during 26 yr of X-ray pointed observations acquired from different space missions. We estimate the dip arrival times using a statistical method that weights the count-rate inside the dip with respect to the level of persistent emission outside the dip. We fit the obtained delays as a function of the orbital cycles both with a linear and a quadratic function. We infer the orbital ephemeris of XB 1254–690, improving the accuracy of the orbital period with respect to previous estimates. We infer a mass of M_2 = 0.42 ± 0.04 M_⊙for the donor star, in agreement with estimations already present in literature, assuming that the star is in thermal equilibrium while it transfers part of its mass via the inner Lagrangian point, and assuming a neutron star mass of 1.4 M_⊙. Using these assumptions, we also constrain the distance to the source, finding a value of 7.6±0.8 kpc. Finally, we discuss the evolution of the system, suggesting that it is compatible with a conservative mass transfer driven by magnetic braking.  相似文献   

10.
New multi-color light curves of the very short period K-type eclipsing binary V1799 Ori were obtained and analyzed with the Wilson-Devinney code. The photometric solutions reveal that the system is a W-type shallow-contact binary with a mass ratio of q = 1.335(±0.005) and a degree of contact of about f = 3.5(±1.1)%.In general, the results are in good agreement with what is reported by Samec. Dramatic manifestations of the O'Connell effect that appear in the light curves can be explained well by employing starspots on the binary surface, which confirms that the system is active at present. Several new times of light minimum were obtained. All the available times of light minimum were collected, along with the recalculated and newly obtained values. Applying a least-squares method to the constructed O- C diagram,a new ephemeris is derived for V1799 Ori. The orbital period is found to show a continuous weak increase at a rate of 1.8(±0.6) × 10-8d yr-1. The extremely shallow contact, together with the period increase, suggests that the binary may be at a critical stage predicted by thermal relaxation oscillation theory.  相似文献   

11.
We present multi-color photometric observations and a one-dimensional spectrum, acquired from March 2016 to May 2017, for the short-period eclipsing binary PS Vir, by using the 2.16-m,85-cm and 60-cm telescopes at Xinglong station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. The spectral type was determined as G2V from the onedimensional spectrum. The photometric solution was reduced from BV Rc light curves. The results imply that PS Vir is a W-subtype contact binary with a mass ratio of q = 0.305(±0.008) and a fill-out factor of f = 14.4(±1.8)%. The orbital period may be undergoing a cyclic oscillation with an amplitude of A = 0.0027(±0.0001) d and a modulated period of 11.7(±0.2) yr, which may result from the light-time effect due to a third body. The lower limit on mass for the assumed component is 0.12 M⊙.Moreover, the more massive component of PS Vir may be a bit more evolved star as determined from the mass-luminosity diagram.  相似文献   

12.
By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 UMa manifests a shallow contact configuration, while V509 Cam exhibits a medium contact configuration. Given that both of them are totally eclipsing binaries, the physical parameters derived only by the photometric light curves are reliable. Meanwhile, the period changes of the two targets were analyzed based on all available eclipsing times. We discovered that V342 UMa shows long-term period decrease with a rate of-1.02(±0.54) × 10~(-7) d yr~(-1) and that V509 Cam displays long-term period increase with a rate of 3.96(±0.90) × 10~(-8) d yr~(-1). Both the conservative mass transfer and angular momentum loss via magnetic stellar winds can be used to interpret the long-term period decrease of V342 UMa. The longterm period increase of V509 Cam can be explained by mass transfer from the less massive star to the more massive one. The absolute parameters of the two binaries were estimated according to their Gaia distances and our derived photometric solution results. This method can be extended to other contact binaries without radial velocities but with reliable photometric solutions. Their evolutionary states were investigated and we found that they reveal properties that are identical to other W-subtype contact systems.  相似文献   

13.
W UMi is a near contact, semi-detached, double-lined eclipsing binary star with an orbital period of 1.7 d. Simultaneous analysis of new BV R multi-color light curves and radial velocity data yields the main astrophysical parameters of the binary and its component stars. We determined mass and radius to be M_1 = 3.22 ± 0.08 M_⊙, R_1 = 3.63 ± 0.04 R_⊙ for the primary star and M_2 = 1.44 ± 0.05 M_⊙,R_2 = 3.09 ± 0.03 R_⊙ for the secondary star. Based on analysis of mid-eclipse times, variation in the orbital period is represented by a cyclic term and a downward parabola. Mass loss from the system is suggested for a secular decrease(-0.02 s yr~(-1)) in the period. Both the mechanisms of a hypothetical tertiary star orbiting around W UMi and the surface magnetic activity of the less massive cooler companion were used to interpret periodic changes. Observational parameters were found to be consistent with binary stellar evolution models produced in the non-conservative approach of MESA at a higher metallicity than the Sun and an age of about 400 Myr for the system. Evidence that the system is rich in metal was obtained from spectral and kinematic analysis as well as evolution models. W UMi, a high mass ratio system compared to classical semi-detached binaries, is an important example since it is estimated from binary evolutionary models that the system may reach its contact phase in a short time interval.  相似文献   

14.
Complete BV light curves of the W UMa type binary RT LMi are presented. From the observations, four times of minimum light were determined. Based on the new times of minimum light and those collected from the literature, changes in the orbital period of the system were found and analyzed with Kalimeris et al.'s method. The result shows that the orbital period possibly oscillates with a cycle of about 64 years and an amplitude of 1.2 × 10-6 days. The present CCD photometric observations reveal that the light curves are obviously asymmetrical, and show a positive O'Connell effect, while the light curves obtained in 1982 exhibit a negative O'Connell effect. The present light curves were analyzed by means of the latest version of the Wilson-Devinney code, which was also used to correct the photometric effects, including the distortion on the radial-velocity curves obtained by Rucinski et al. The following absolute dimensions have been derived: MI -1.28 ±0.08 M⊙, M2 = 0.48 ±0.06 M⊙, R1 = 1.28 ±0.06 R⊙,  相似文献   

15.
We present results of CCD photometric observations of the short-period W UMatype contact binary system, RZ Com. The light curve of the binary has changed from Wsubtype to A-subtype from 1998 to 2003, then back to W-subtype in 2004. An analysis was carried out using the 2003 version of the Wilson-Devinney code. It is confirmed that RZ Com is a low-degree, overcontact f = 20.1% (±7.4%) binary system with a high inclination of i = 81.°40 (±0.°40), and a mass ratio q = 2.351 (±0.031). Combining four newly determined times of light minimum with others in the literature, the variations in orbital period is examined. A small-amplitude oscillation (A=0.0065d), with a period of 41.5 year, is discovered superimposed on a long-term increase at rate dP/dt = +3.97×10-8d yr-1. The period oscillation can be explained either by the light-time effect due to the presence of an unseen third body, or by cycles of magnetic activity on the components. Combining our photometric solution with the spectroscopic elements obtained by Mclean & Hilditch, the absolute dimensions of RZ Com are: M1 = 1.14 (+0.19)Mo, M2 = 0.50 (-4-0.09)Mo, R1= 1.12 (±0.01)R⊙, R2 = 0.78 (±0.01)R⊙ and A = 2.41 (±0.02)R⊙.  相似文献   

16.
We first present the multicolor photometry results of the rapidly rotating magnetic star HD 345439 using the Nanshan One-meter Wide-field Telescope.From the photometric observations,we derive a rotational period of 0.7699±0.0014 day.The light curves of HD 345439 are dominated by the double asymmetric S-wave feature that arises from the magnetic clouds.Pulsating behaviors are not observed in Sector 41 of the Transiting Exoplanet Survey Satellite.No evidence is found of the occurrence of centrifug...  相似文献   

17.
Time-series photometric observations were made for the high amplitudeδScuti star CW Ser between 2011 and 2012 at the Xinglong Station of National Astronomical Observatories,Chinese Academy of Sciences.After performing the frequency analysis of the light curves,we confirmed the fundamental frequency of f=5.28677 c d 1,together with seven harmonics of the fundamental frequency,which are newly detected.No additional frequencies were detected.The O C diagram,produced with the 21 newly determined times of maximum light combined with those provided in the literature,helps to obtain a new ephemeris formula of the times of maximum light with the pulsation period of 0.189150355±0.000000003 d.  相似文献   

18.
UBV photometric observations of LQ And and EM Cep were made with 60 cm telescope at Beijing Astronomical Observatory from 1990 to 1992. Some results are briefly summarized as follows:(1) LQ And317 data sets have been obtained. HR9011 was used as the comparison star. Combining these data with some published VBV measurements of secured during 1983-1988, an improved period of light variation has been derived, and a new ephemeris for minimum light has been suggested:T min. light = HJD 2445621.5964 0.309418 × E.(2) EM Cep277 data sets have been obtained. HD208218 was used as the comparison star. With these data a minimum light time base been derived at HJD 2448912.0452. Combining this value with all published previously, an improved linear ephemeris has been derived with a rms of 0.01382:T min. light = HJD 2440134.7338 0.8061840 x EIt is of interest to note that there is also a possibility of decrease tendency of the period. We have derived an ephemeris by using a binomial fitting with a rms of 0.01155:  相似文献   

19.
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10-7 d yr-1. The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.  相似文献   

20.
We report a V band photometry of the SU UMa star IR Gem at quiescence in January 2002. The observations were made with two telescopes spaced - 160° apart in longitude. Several photometric modulations have been found. One gives a period of 98.50(13) min, exactly equal to the orbital period determined spectroscopically. Two others occasionally strengthen and seem to be positive and negative superhumps with periods of 103.6(4) and 95.4(4) min, 5.2% longer and 3.1% shorter than the orbital period, respectively. A signal at - 0.6 c/d in the power spectrum is roughly consistent with the expected period of nodal precession of the disk. There is a puzzling peak at 0.21(3) c/d corresponding to the - 4.3 d sine wave seen in the raw light curve. We suspect it to be a beat frequency between the frequencies of apsidal and nodal precessions of the disk. Quasi-periodic cycles with amplitudes 0.15-0.6 mag can be seen in the light curve. The mechanism underlying this modulation is not clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号