首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By applying the ‘theory of synchronization' from the science of complexity to studying the regional regularity of ore formation within the Nanling region of South China,a characteristic target-pattern regional ore zonality has been discovered.During the early and late Yanshanian epoch (corresponding respectively to the Jurassic and Cretaceous periods),two centers of ore formation emerged successively in the Narding region; the former is mainly for rare metals (W,Sn,Mo,Bi,Nb) and one rare earth element (La) and was generated in the Jurassic period; whereas the latter is mainly for base metals (Cu,Pb,Zn,Sb,Hg),noble metals (Au,Ag),and one radioactive element (U) and was generated in the Cretaceous period.Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southern Hunan Province.The characteristic giant nonlinear target pattern regional ore zonality was generated respectively from the two centers of ore formation by the spatio-temporal synchronization process of the Nanling complex metallogenic system.It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality.Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures.Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution.The integral successive processes of synchronization-dynamical clustering-phase dynamics accomplished the regional ore zonality by way of "multiple field dynamics" of spatio-temporal superposition of multiple coupled pulsatory solitary wave trains of the zonal sequences of different ores.A new methodology for revealing regional ore zonality is developed,which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

2.
Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions (Panzhihua and Baima) in the Emeishan large igneous province, SW China. This paper reports on the new mineral compositions of magnetite and ilmenite for selected cumulate rocks and clinopyroxene and plagioclase for basalts. We use these data to estimate the oxidation state of parental magmas and during ore formation to constrain the factors leading to the abundant accumulation of Fe–Ti oxides involved with the Hongge layered intrusion. The results show that the oxygen fugacities of parental magma are in the range of FMQ?1.56 to FMQ+0.14, and the oxygen fugacities during the ore formation of the Fe–Ti oxides located in the lower olivine clinopyroxenite zone (LOZ) and the middle clinopyroxenite zone (MCZ) of the Hongge intrusion are in the range of FMQ?1.29 to FMQ?0.2 and FMQ?0.49 to FMQ+0.82, respectively. The MELTS model demonstrates that, as the oxygen fugacity increases from the FMQ?1 to FMQ+1, the proportion of crystallization magnetite increases from 11 % to 16 % and the crystallization temperature of the Fe–Ti oxides advances from 1134 to 1164 °C. The moderate oxygen fugacities for the Hongge MCZ indicate that the oxygen fugacity was not the only factor affecting the crystallization of Fe–Ti oxides. We speculated that the initial anhydrous magma that arrived at the Hongge shallow magma chamber became hydrous by attracting the H2O of the strata. In combination with increasing oxygen fugacities from the LOZ (FMQ?1.29 to FMQ?0.2) to the MCZ (FMQ?0.49 to FMQ+0.82), these two factors probably account for the large-scale Fe–Ti oxide ore layers in the MCZ of the Hongge intrusion.  相似文献   

3.
4.
The Kalaxiange’er porphyry copper ore belt is situated in the eastern part of the southern Altai of the Central Asian Orogenic Belt and forms part of a broad zone of Cu porphyry mineralization in southern Mongolia, which includes the Oyu Tolgoi ore district and other copper–gold deposits. The copper ore bodies are spatially associated with porphyry intrusions of granodiorite, quartz diorite, quartz syenite, and quartz monzonite and have a polygenetic (polychromous) origin (magmatic porphyry, hydrothermal, and supergene). The mineralized porphyries are characterized by almost identical REE and trace element patterns. The Zr/Hf and Nb/Ta ratios are similar to those of normal granite produced through the evolution of mantle magma. The low initial Sr isotope ratio ISr, varying within a narrow range of values (0.703790–0.704218), corresponds to that of primitive mantle, whereas the εNd(T) value of porphyry varies from 5.8 to 8.4 and is similar to that of MORB. These data testify to the upper-mantle genesis of the parental magmas of ore-bearing porphyry, which were then contaminated with crustal material in an island-arc environment. The isotopic composition of sulfur (unimodal distribution of δ34S with peak values of − 2 to − 4‰) evidences its deep magmatic origin; the few lower negative δ34S values suggest that part of S was extracted from volcanic deposits later. The isotopic characteristics of Pb testify to its mixed crust–upper-mantle origin. According to SHRIMP U–Pb geochronological data for zircon from granite porphyry and granodiorite porphyry, mineralization at the Xiletekehalasu porphyry Cu deposit formed in two stages: (1) Hercynian “porphyry” stage (375.2 ± 8.7 Ma), expressed as the formation of porphyry with disseminated and vein–disseminated mineralization, and (2) Indosinian stage (217.9 ± 4.2 Ma), expressed as superposed hydrothermal mineralization. The Re–Os isotope data on molybdenite (376.9 ± 2.2 Ma) are the most consistent with the age of primary mineralization at the Xiletekehalasu porphyry Cu deposit, whereas the Ar–Ar isotopic age (230 ± 5 Ma) of K-feldspar–quartz vein corresponds to the stage of hydrothermal mineralization. The results show that mineralization at the Xiletekehalasu porphyry Cu deposit was a multistage process which resulted in the superposition of the Indosinian hydrothermal mineralization on the Hercynian porphyry Cu mineralization.  相似文献   

5.
6.
We present data on the location, chemical composition, and contents of trace elements in thin ferromanganese crusts at two sites of the submarine Vityaz’ Ridge: Diana and Bussol’ test grounds. The crusts abound in inclusions of grains of nonferrous (Cu, Zn, Pb, Sn, Ni, W) and noble (Au, Ag, Pd, Pt) metals in the form of native elements, sulfides, sulfates, oxides, or intermetallic compounds. The crusts at the Diana test ground contain mainly grains of nonferrous-metal minerals, and those at the Bussol’ test ground, mainly noble-metal minerals. There are also sites with Ni-rich (up to 3.5%) manganese crust. A detailed study of the ore crusts from the Vityaz’ Ridge showed that they are probably at the initial stage of formation.  相似文献   

7.
The Heijianshan Fe–Cu (–Au) deposit, located in the Aqishan-Yamansu belt of the Eastern Tianshan (NW China), is hosted in the mafic–intermediate volcanic and mafic–felsic volcaniclastic rocks of the Upper Carboniferous Matoutan Formation. Based on the pervasive alteration, mineral assemblages and crosscutting relationships of veins, six magmatic–hydrothermal stages have been established, including epidote alteration (Stage I), magnetite mineralization (Stage II), pyrite alteration (Stage III), Cu (–Au) mineralization (Stage IV), late veins (Stage V) and supergene alteration (Stage VI). The Stage I epidote–calcite–tourmaline–sericite alteration assemblage indicates a pre-mineralization Ca–Mg alteration event. Stage II Fe and Stage IV Cu (–Au) mineralization stages at Heijianshan can be clearly distinguished from alteration, mineral assemblages, and nature and sources of ore-forming fluids.Homogenization temperatures of primary fluid inclusions in quartz and calcite from Stage I (189–370 °C), II (301–536 °C), III (119–262 °C) and V (46–198 °C) suggest that fluid incursion and mixing probably occurred during Stage I to II and Stage V, respectively. The Stage II magmatic–hydrothermal-derived Fe mineralization fluids were characterized by high temperature (>300 °C), medium–high salinity (21.2–56.0 wt% NaCl equiv.) and being Na–Ca–Mg–Fe-dominated. These fluids were overprinted by the external low temperature (<300 °C), medium–high salinity (19.0–34.7 wt% NaCl equiv.) and Ca–Mg-dominated basinal brines that were responsible for the subsequent pyrite alteration and Cu (–Au) mineralization, as supported by quartz CL images and H–O isotopes. Furthermore, in-situ sulfur isotopes also indicate that the sulfur sources vary in different stages, viz., Stage II (magmatic–hydrothermal), III (basinal brine-related) and IV (magmatic–hydrothermal). Stage II disseminated pyrite has δ34Sfluid values of 1.7–4.3‰, comparable with sulfur from magmatic reservoirs. δ34Sfluid values (24.3–29.3‰) of Stage III Type A pyrite (coexists with hematite) probably indicate external basinal brine involvement, consistent with the analytical results of fluid inclusions. With the basinal brines further interacting with volcanic/volcaniclastic rocks of the Carboniferous Matoutan Formation, Stage III Type B pyrite–chalcopyrite–pyrrhotite assemblage (with low δ34Sfluid values of 4.6–10.0‰) may have formed at low fO2 and temperature (119–262 °C). The continuous basinal brine–volcanic/volcaniclastic rock interactions during the basin inversion (∼325–300 Ma) may have leached sulfur and copper from the rocks, yielding magmatic-like δ34Sfluid values (1.5–4.1‰). Such fluids may have altered pyrite and precipitated chalcopyrite with minor Au in Stage IV. Eventually, the Stage V low temperature (∼160 °C) and low salinity meteoric water may have percolated into the ore-forming fluid system and formed late-hydrothermal veins.The similar alteration and mineralization paragenetic sequences, ore-forming fluid sources and evolution, and tectonic settings of the Heijianshan deposit to the Mesozoic Central Andean IOCG deposits indicate that the former is probably the first identified Paleozoic IOCG-like deposit in the Central Asian Orogenic Belt.  相似文献   

8.
An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was dominated by an extensional regime or an oceanic subduction-arc regime.A review of the midPaleoproterozoic magmatism and sedimentation for the Hengshan-Wutai-Fuping region suggests that a back-arc extension regime was dominant in this region.This conclusion is consistent with the observation that the 2.35-2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline(or A-type)granites,and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group.Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga,recent zircon U-Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga.The metamorphic ages of ~1.85 Ga,obtained mostly from the high-grade rocks using the zircon U-Pb approach,most probably indicate uplifting and cooling of these high-grade terranes.This is because(i)phase modeling suggests that newly-grown zircon grains in highgrade rocks with a melt phase cannot date the age of peak pressure and temperature stages,but the age of melt crystallization in cooling stages;(ii)the metamorphic P-T paths with isobaric cooling under 6-7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle-lower crust;and(iii)the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga.Thus,an alternative tectonic scenario for the Hengshan-Wutai-Fuping region involves:(i)formation of a proto-NCC at ~2.5 Ga;(ii)back-arc extension during 2.35-2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement;?  相似文献   

9.
10.
Two new genera with two new species of sawflies, Cathayxyela extensa gen. et sp. nov. and Aequixyela immensa gen. et sp. nov., from the Middle Jurassic Jiulongshan Formation of southeastern Inner Mongolia, China, are assigned to the subfamily Xyelinae (Hymenoptera, Xyelidae). Cathayxyela gen. nov. can be distinguished by the third antennal article longer than the head; mesoprescutum and mesoscutellum nearly equal in length; the forewing with Sc meeting C before the junction of 1-M and 1- Rs; a weak and narrow pterostigma; and 3-Cu at least 1.5 times longer than the lm-cu. Aequixyela gen. nov. is characterized by the third antennal article nearly as long as the head; the forewing with Rs+M approximately equal to 2-Rs in length; 2m-cu inclined toward the wing base and nearly reaching the middle of cell 3rm; lm-cu as long as the 2-Cu and 3-Cu; and the cell 2cua of regular hexagonal shape.  相似文献   

11.
A new fossil species,Anthoscytina macula sp.nov.,of the family Procercopidae is described from the Early Cretaceous Yixian Formation in Huangbanjigou,Chaomidian Village,Beipiao City,Liaoning Province,China.A key to the species of the genus Anthoscytina Hong,1983 is provided.The diagnosis of the genus is revised.  相似文献   

12.
A new large-bodied theropod dinosaur,Datanglong guangxiensis gen.et sp.nov.,was recovered from the Lower Cretaceous Xinlong Formation of the Datang Basin,Guangxi.It is unique in several features including:posteriormost dorsal vertebra with teardrop-shaped pneumatic foramen confined by enlarged pcdl,acpl and the centrum; posteriormost dorsal with well-developed,horizontal prpl; posteriormost dorsal with a parapophysis projecting more laterally than the diapophysis; brevis fossa shallow with short,ridge-like medial blade; and iliac pubic peduncle with posteroventrally expanded margin.Cladistic analysis supports the idea that this new taxon Datanglong guangxiensis is a primitive member of the Carcharodontosauria in possessing two unambiguous synapomorphies:large external pneumatic foramina and internal spaces present in the lateral surface of ilium,and a peg-and-socket ischiac articulation with the ilium.The presence of the new taxon from Guangxi further confirms that Carcharodontosauria were cosmopolitan large-bodied predators during the Early–mid Cretaceous.  相似文献   

13.
The Xiaotian–Mozitan Shear Zone(XMSZ) is the boundary of the Dabie High-grade Metamorphic Complex(DHMC) and the North Huaiyang Tectonic Belt. It was deformed in ductile conditions with a top-to-NW/WNW movement.Geothermometers applied to mineral parageneses in mylonites of the shear zone give a temperature range of 623–691°C for the predeformation and 515–568°C for the syndeformation, respectively, which indicates a retrograde process of evolution.A few groups of zircon U-Pb ages were obtained from undeformed granitic veins and different types of deformed rocks in the zone. Zircons from the felsic ultramylonites are all magmatic, producing a weighted mean 206 Pb/238 U age of 754 ± 8.1 Ma, which indicates the time of magmatic activities caused by rifting in the Neoproterozoic. Zircons from the granitic veins, cutting into the mylonites, are also of magmatic origin, producing a weighted mean 206 Pb/238 U age of 130 ± 2.5 Ma,which represents the time of regional magmatic activity in the Cretaceous. Zircons from the mylonitic gneisses are of anatectic-metamorphic origins and are characterized by a core-mantle interior texture, which yielded several populations of ages including the Neoproterozoic ages with a weighted mean 206 Pb/238 U age of 762 ± 18 Ma, similar to that of the felsic ultramylonites and the Early Cretaceous ages with a weighted mean 206 Pb/238 U age of 143 ± 1.8 Ma, indicating the anatectic metamorphism in the Dabie Orogenic Belt(DOB). Based on integrated analysis of the structure, thermal conditions of ductile deformation and the contact relations of the dated rocks, the activation time of the Xiaotian–Mozitan Shear Zone is constrained between ~143 Ma and 130 Ma, during which the DOB was undergoing a transition in tectonic regime from compression to extension. Therefore, the deformation and evolution of this shear zone plays an instrumental role in fully understanding this process. This research also inclines us to the interpretation of it as an extensional detachment, with regard to the tectonic properties of the shear zone. It may also be part of a continental scale extension in the background of the North China Block's cratonic destruction, dominated by the subduction and roll-back of the Paleo-Pacific plate, but more detailed work is needed in order to unravel its complicated development.  相似文献   

14.
The Keketale Pb–Zn deposit is located in the Devonian volcanic-sedimentary Maizi basin of the Altay orogenic belt. The mineralization at Keketale is hosted in marbles and deformed volcanic tuffs and biotite–garnet–chlorite schists, folded into a series of overturned synclines formed in multiple deformation events. Keketale contains economic amounts of Pb (0.89 Mt @ 1.51 wt.%), Zn (1.94 Mt @ 3.16 wt.%) and Ag (650 t @ 40 g/t).Detailed petrographic studies have defined two main generations of sulfide development. The banded pyrite of the early Stage A is commonly stratiform, with minor galena, sphalerite and chalcopyrite. Stage B is characterized by a large amount of polymetallic sulfides including pyrrhotite, chalcopyrite, sphalerite and galena, with minor pyrite hosted in quartz veins.Three types of fluid inclusions (FIs), including mixed carbonic-aqueous (C-type), pure carbonic (PC-type) and aqueous (W-type), have been recognized in quartz of stage B. The C-type FIs have homogenization temperatures of 150–326 °C and salinities of 0.2–16.6 wt.% NaCl equivalent. The PC-type FIs are dominated by CO2 with minor CH4 and N2 and have initial ice-melting temperatures of − 57.5 to − 56.7 °C, CO2 homogenization temperatures of 11–14.1 °C. The W-type primary FIs were completely homogenized at temperatures of 124–359 °C with salinities of 5.0–14.6 wt.% NaCl equivalent. Such CO2-rich fluid inclusions are consistent with those discovered in orogenic-type deposits in the Altay area and elsewhere.Muscovite separates from the polymetallic quartz veinlets of stage B yield a well-defined 40Ar/39Ar isotopic plateau age of 259.33 ± 2.56 Ma, with an isochron age of 259.62 ± 2.65 Ma. This age is coeval with the closure of the Paleo-Asia Ocean and reactivation of the Ertix Fault system.LA-ICP-MS analyses of two generations of pyrite indicate that the banded pyrite of stage A is relatively depleted in metallic elements and contains low contents of Cu (0.39 ppm), Ag (0.20 ppm), Au (below the detection limits), Pb (17.43 ppm) and Zn (14.38 ppm); whereas the pyrite in quartz–polymetallic sulfide veinlets of the stage B is relatively rich in metallic elements, e.g., Cu (2.56 ppm), Ag (3.07 ppm), Au (0.01 ppm), Pb (1047 ppm) and Zn (1136 ppm). The trace amounts of Cu, Pb, Zn, Au and Ag are interpreted to have been initially locked in the lattice of type-A pyrite, and then liberated and precipitated as micromineral inclusions with type-B pyrite during subsequent metamorphism and deformation.Two key factors are considered vital to the formation of economic ores of the Keketale Pb–Zn deposit, namely the original Devonian banded pyrite formed in a VMS system and subsequent Permian deformation and metamorphic processes that liberated Cu, Pb, Zn, Au and Ag from the lattice of type-A pyrite to form galena, sphalerite and chalcopyrite with minor muscovite in quartz veinlets. The model provides a new interpretation of VMS Pb–Zn deposit occurring in back-arc basin environments followed by collision, and new insights into the unique regional Fe–Cu–Pb–Zn–Au mineralization in the Altay orogenic belt.  相似文献   

15.
The Dovyren intrusive complex includes the ore-bearing (Cu–Ni–PGE) Yoko–Dovyren layered pluton (728 Ma, up to 3.4 km in thickness), underlying ultramafic sills, and comagmatic leuconorite and gabbro-diabase dikes. Studies of Sr–Nd–Pb isotope systems were carried out for 24 intrusive rocks and five associated low- and high-Ti basalts. The high-Ti basalts show 0.7028 ≤ (87Sr/86Sr)T ≤ 0.7048 and 4.6 ≤ εNd(T) ≤ 5.8, similar to the values in MORB. The intrusive basic and ultrabasic rocks are geochemically similar to the low-Ti formation, making a compact cluster of compositions with extremely high ratios of radiogenic Sr and Pb isotopes and low εNd values. The maximum enrichment in radiogenic Sr is shown by the rocks near the pluton bottom ((87Sr/86Sr)T = 0.71387 ± 0.00010 (2σ); εNd(T) = –16.09 ± 0.06), which are the products of crystallization of the most primitive high-Mg magmas. The above-located dunites, troctolites, and gabbro show lower enrichment, probably because of the contamination of the host rocks during the filling of the magma chamber and/or because of the slight heterogeneity of the source. Calculations of the proportions of mixing of the parental melt with carbonate terrigenous material have shown that the variations in the Sr and Nd isotope ratios are due to the incredibly high contamination of the sediments, up to 40–50%. This contradicts the succession of the main rock types in the Yoko–Dovyren pluton in accordance with the crystallization of picrite-basaltic magma. The contribution of 5–10% high-Ti component seems more likely and suggests interaction between two isotopically contrasting magmas in this province in the Late Riphean. In general, the minor variations in εNd(T) of the intrusive rocks and metavolcanics (–14.3 ± 1.1) testify to the isotopically anomalous source of the low-Ti magmas. The time variation trend of εNd and geochemical features of the Dovyren rocks indicate that the products of melting of 2.7–2.8 Ga suprasubduction mantle might have been the massif protolith. Thus, the Dovyren parental magmas formed from a much older (sub)lithospheric source in the Late Riphean. The source was initially enriched in a mafic component with a low Sm/Nd ratio and was isolated from the convecting mantle and mantle melting processes for ~ 2 Gyr. The existence of such a long-living and at least twice reactivated lithospheric substratum is confirmed by the fact that the Nd isotope evolution trend of the initially nonanomalous mantle protolith includes not only the Dovyren rocks but also the Paleoproterozoic gabbro of the Chinei pluton and the Archean enderbites of the Baikal region.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

16.
Most Mississippi Valley Type (MVT) Pb–Zn deposits have a common host-rock lithofacies sequence known as the hydrothermal dolomite (HTD) facies; however, the spatial and temporal relationships between dolomitization and Pb–Zn mineralization remain unclear. In this paper, we report a detailed cathodoluminescence (CL) study on the HTD facies of the No. II orebody in the Maoping Pb–Zn deposit in northeastern Yunnan Province, southwestern China. The results indicate that the dolomite in the Carboniferous limestone is part of a spectrum of hydrothermal mineral deposits, and the diagenesis and mineralization processes, in which the acidity of fluids played an important role, can be divided into six steps. A dolomite prototype formed during the first and second steps. In the third step, acid fluids produced by sulfide precipitation interacted with the dolomite prototype, resulting in dissolution and alteration, thus forming cavities. The fluid that formed during the first three steps flowed along open tensional faults. Dolomitization in the first step covered most of the region of later mineralization and gradually extended toward the center of the orebody. In the fourth and fifth steps, vugs and fractures were the main pathways for fluids, with only a small volume of fluid in the fifth step. Dedolomitization occurred in the sixth step and vugs were filled mostly by calcite. However, the fact that voids are present in only a small number of vugs is indicative of fluid exhaustion. Dolomite with growth zoning is characteristic of precipitation by ore-forming fluids accompanied by pulsed filling. There is no significant correlation between vugs and the locus of mineralization. Rather, the vugs indicate that the ore-forming fluids had passed through them, and the locus of massive ore formation was the center of the migrating fluid body. The saddle dolomite was deposited during pauses in sulfide precipitation. Cathodoluminescent zonation of HTD can be used as an aid in understanding the ore-forming process and for mineral prospecting in the Maoping deposit and other MVT deposits.  相似文献   

17.
Hürlimann  Marcel  Guo  Zizheng  Puig-Polo  Carol  Medina  Vicente 《Landslides》2022,19(1):99-118

It is widely accepted that future environmental changes will affect rainfall-induced shallow slides in high-mountain areas. In this study, the Val d’Aran region located in the Central Pyrenees was selected to analyze and quantify the impacts of land use and land cover (LULC) and climate changes on regional landslides susceptibility. We analyzed 26 climate models of the EURO-CORDEX database focussing on the future rainfall conditions. The IDRISI TerrSet software suite was used to create the future LULC maps. These two inputs were analyzed individually and in a combined way defining 20 different scenarios. All these scenarios were incorporated in a physically based stability model to compute landslides susceptibility maps. The results showed that both environmental conditions will considerably change in the future. The daily rainfall will increase between 14 and 26% assuming a return period of 100 years. This intensification of precipitation will produce an overall decrease of the stability condition in the study area. Regarding the LULC prediction, the forest area will significantly increase, while in particular grassland, but also shrubs decrease. As a consequence, the overall stability condition improves, because the root strength is higher in forest than in grassland and shrubs. When we analyzed the combined impacts, the results showed that the positive effect of LULC changes is larger than the negative influence of rainfall changes. Hence, when combining the two aspects in the future scenarios, the stability condition in the study area will improve.

  相似文献   

18.
The Tumen molybdenite–fluorite vein system is hosted by carbonate rocks of the Neoproterozoic Luanchuan Group, located on the southern margin of the North China Craton (NCC) in central China. Previous studies divided the mineralization into four stages according to the crosscutting relationships between veinlets and their mineral assemblages. In this contribution, two distinctive types of fluorite mineralization are recognized: 1) the first type (Type 1) includes colourless, white or green fluorite grains present in Stage 1 veins; and 2) the second type includes Type 2a purple fluorite present in Stage 2 veins and does not coexist with sulfides, and Type 2b purple fluorite crystals associated with sulfides in Stage 2 veins. The rare earth element (REE) content in the fluorite ranges between 13.8 and 27.9 ppm in Type 1, 16.9 and 27.2 ppm in Type 2a, and 42.5 and 75.1 ppm in Type 2b, which suggests that the fluorite was precipitated from acidic fluids (given that REEs are mobile in saline HCl-bearing fluids at high temperature (~ 400 °C)). Comparing the REE chemistry of the Stage 1 against Stage 2 fluorite, the LREE/HREE ratios decrease from 9.8 to 4.0, La/Yb ratios decrease from 16.0 to 6.9 and La/Ho ratios decrease from 10.2 to 3.0, indicating that the hydrothermal process was at high-T and low-pH conditions. The Eu/Eu* ratios in the fluorite decrease from 1.11 ± 0.35 for Type 1 through 0.89 ± 0.19 for Type 2a to 0.75 ± 0.17 for Type 2b, suggesting a gradual increase in oxygen fugacity (fO2) and pH of the mineralising fluid. The Tb/Ca, Tb/La and Y/Ho ratios of the fluorite types indicate that they were formed from the interaction between magmatic fluids and carbonate wallrocks. The fluorite samples show similar REE + Y (REY) patterns to those of dolostone units in the Luanchuan Group and the nearby Neoproterozoic syenite, suggesting that the REY in the fluorite was mainly sourced from the host-rocks, although the syenite could be an additional minor source.  相似文献   

19.
The Wangchengpo Frasnian section of Dushan County contains two atrypid brachiopod assemblages. The lower is characterized by the Atryparia (Costatrypa) dushanensis fauna that appears at the base of the Hejiazhai Member approximately in the falsiovalis to transitans conodont zones: the upper is characterized by the Radiatrypa yangi fauna, which appears in the Lujiazhai Member approximately correspondent with the hassi to Upper rhenana conodont zones. Atrypid brachiopods, together with other brachiopods from the Dushan section show that the Hejiazhai Member is of Frasnian age. Preliminary analyses of Frasnian atrypid brachiopods from sections of South China indicate that there are nine genera and subgenera including Atryparia (Costatrypa), Kyrtatrypa, Spinatrypa, lsospinatrypa, Spinatrypina, lowatrypa, Desquamatia (Desquamatia). Desquamatia (Seratrypa), and Radiatr)pa. Atrypid species diversity did not change much through the Frasnian. On a regional scale in South China, most atrypid species went extinct prior to the Frasnian/Famennian boundary. At any specific locality or section, these atrypids became extinct about 20-40 m below the Frasnian/Famennian (F/F) boundary, within the linguiformis conodont Zone, marking this as the major extinction level. Three new atrypid species are described: Atryparia (Costatrypa) dushanensis, lowatrypa pseudobodini, and Radiatrypa yangi.  相似文献   

20.
Two incomplete bones referred to ankylosaur scapulocoracoid and humerus are described, which were discovered from the Early Cretaceous Jiufotang Formation of Dachengzi Town, Kazuo County, Liaoning Province. Ankylosaur dinosaurs have ever been found in the Lower Cretaceous Yixian, Fuxin and Sunjiawan Formations of western Liaoning. The occurrence of ankylosaurs within Jiufotang Formation improves our knowledge on the ankylosaur stratigraphic distribution. Based on the length of scapulocoracoid, the new dinosaur is estimated to exceed 6.0 meters long, representing the largest ankylosaur in western Liaoning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号