首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By applying the ‘theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of southern China, a characteristic targetpattern regional ore zonality has been discovered. During the early and late Yanshanian epoch (corresponding respectively to the Jurassic and Cretaceous periods), two centers of ore formation emerged successively in the Nanling region; the former is mainly for rare metals (W, Sn,Mo, Bi, Nb) and one rare-earth element (La) and was generated in the Jurassic period; whereas the latter is mainly for base metals (Cu, Pb, Zn, Sb, Hg), noble metals (Au, Ag), and one radioactive element (U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southernHunan province. The characteristic giant nonlinear target-pattern regional ore zonality was generated by spatio-temporal synchronization process of the Nanling complex metallogenic system. It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality. Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures. Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution. A new methodology for revealing regional ore zonality is developed, which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

2.
By applying the ’theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of southern China,a characteristic target-pattern regional ore zonality has been discovered.During the early and late Yanshanian epoch(corresponding respectively to the Jurassic and Cretaceous periods),two centers of ore formation emerged successively in the Nanling region;the former is mainly for rare metals(W,Sn,Mo,Bi,Nb) and one rare-earth element (La) and was generated in the Jurassic period;whereas the latter is mainly for base metals(Cu,Pb,Zn,Sb, Hg),noble metals(Au,Ag),and one radioactive element(U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southern Hunan Province.The characteristic giant nonlinear target-pattern regional ore zonality was generated by spatio-temporal synchronization process of the Nanling complex metallo-genic system.It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality.Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures.Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution.A new methodology for revealing regional ore zonality is developed,which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

3.
By applying the ‘theory of synchronization’ from the science of complexity to studying the regional regularity of ore formation within the Nanling region of South China, a characteristic target-pattern regional ore zonality has been discovered. During the early and late Yanshanian epoch (corresponding respectively to the Jurassic and Cretaceous periods), two centers of ore formation emerged successively in the Nanling region; the former is mainly for rare metals (W, Sn, Mo, Bi, Nb) and one rareearth element (La) and was generated in the Jurassic period; whereas the latter is mainly for base metals (Cu, Pb, Zn, Sb, Hg), noble metals (Au, Ag), and one radioactive element (U) and was generated in the Cretaceous period. Centers of ore formation were brought about by interface dynamics respectively at the Qitianling and Jiuyishan districts in southern Hunan Province. The characteristic giant nonlinear targetpattern regional ore zonality was generated respectively from the two centers of ore formation by the spatio-temporal synchronization process of the Nanling complex metallogenic system. It induced the collective dynamics and cooperative behavior of the system and displayed the configuration of the regional ore zonality. Then dynamical clustering transformed the configuration into rudimentary ordered coherent structures. Phase dynamics eventually defined the spatio-temporal structures of the target-pattern regional ore zonality and determined their localization and distribution. The integral successive processes of synchronization-dynamical clustering-phase dynamics accomplished the regional ore zonality by way of “multiple field dynamics” of spatio-temporal superposition of multiple coupled pulsatory solitary wave trains of the zonal sequences of different ores. A new methodology for revealing regional ore zonality is developed, which will encourage further investigation of the formation of deep-seated ore resources and the onset of large-scale mineralization.  相似文献   

4.
<正>1 Introduction Massive tungsten-tin,rare and rare earth metals ore deposits were formed with the widespread granite magmatic activity in early Yanshanian period in the eastern Nanling region.Recent studies indicate that the Yanshanian highly differentiated-granite formation is closely related to the deposits of tungsten and tin,rare and rare earth metals mineralization in the region(Xiao  相似文献   

5.
The formation of the Tongyu gold deposit, controlled by regional polyphase deformation-metamorphism.is closely related to the regional composite antiform-shear slip fracture zone. Late-stage reworking of theTaihua Group accounts for the enrichment of ore substances. It is a typical syntectonic gold deposit. The formation and evolution of the deposit involved four stages: (Ⅰ) the state of preparation of ore sub-stances, in which primary source beds originated: (Ⅱ) the stage of remobilization of ore substances, in whichregional progressive metamorphism and migmatization and thermodynamic-chemical differentiation led toremobilization of gold and its initial local concentration: (Ⅲ) the stage of gold deposit formation, in which re-gional folding produced concordant and cross shear-slip fractures and under the dynamic action gold was sepa-rated and migrated in a certain direction and concentrated to form a gold deposit: (Ⅳ) the stage ofsuperpositon, reworking and exposure of orebodies, in which the block uplifted and the deposit againunderwent reworking through faulting and mechanical differentiation.Thermodynamic mineralization played adominant role in the formation of the deposit.  相似文献   

6.
The Panzhihua mafic intrusion, which hosts a world-class Fe-Ti-V ore deposit, is in the western Emeishan region, SW China. The formation age(~260 Ma), and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of the Emeishan large igneous province and has little crustal contamination. To assess ore genesis of the Panzhihua Fe-Ti-V ore deposit, two different models have been provided to explain the formation, namely silicate immiscibility and normal fractional crystallization. Silicate...  相似文献   

7.
Abstract: Mantle branch structure is the third tectonic unit of multiple evolution of a mantle branch. It is not only the main mechanism of intercontinental orogeny, but also an important ore-forming and ore-control structure. Studies on geotectonic evolution, regional geological characteristics and ore-forming and ore-control structures have shown that since the Mesozoic the Da Hinggan Mts. region has entered a typical intercontinental orogenic stage, and it is closely related to mantle branch activities. The south-central segment of the Da Hinggan Mts. is a typical mantle branch structure and possesses obvious magmatic-metamorphic complexes in the core, detachment slip beds in the periphery and overlapped fault depression basins. Moreover, all of these are the principal factors leading to ore formation and ore control in the region. This paper also further explores the mechanism of mineralization in the south-central segment of the Da Hinggan, summaries the rules of mineralization, puts forward the models of mineralization and points out future ore-exploring orientation.  相似文献   

8.
The Shazi anatase ore deposit in Qinglong, Guizhou Province, is a large-sized anatase deposit that has been recently explored. The characteristics of major oxides in the ore are similar to those of modem laterite weath- ering crust and laterite in the laterite-type gold deposits in the western part of Guizhou Province. Studies on the REE characteristics of basalts and anatase ores in the study region showed that both of them do have extremely strong affinities. There are two groups of trace elements in the ores, i.e., Au-Ag-As-Sb-Hg-Tl association and Sc-TiO2-Cu-Fe-Mn association, reflecting that the formation of anatase ore is related to the formation of siliceous claystone at the early stage of eruption of the Emeishan basaltic magma. The siliceous claystones are the major country rocks for the formation of laterite-type gold ores and anatase ores. In the region anatase ores are rich in Sc and the basalts enriched in Fe, Mn, Ti and Sc are the material source of metallogenesis.  相似文献   

9.
In the Zhongtiao Mountains, all of the most significant copper deposits occur in the early Proterozoic mobile belt. They are the meta-sedimentary copper deposit in meta-pelite semi-pelite formation and the meta-volcanic porphyry copper deposit in meta-potassic volcano-sedimentary formation, belonging respectively to the lower and middle-upper Jiang-xian Group(2, 500--2, 300 Ma); and the meta-sedimentary-remoulded copper deposit in metacarbonate-black shale formation of the Zhongtiao Group(2, 300--1, 830 Ma). The Zhongtiao Movement(about 1, 800 Ma B. P.) had caused regional metamorphism and hydrothermal action added to the early Proterozoic mobile belt, thus reformedthe original ore deposits of different genetic types to give similar hydrothermal and geochemical characters. However, primary features of the ore deposits as controlled by the original sedimentary or volcano-sedimentary formation are basically unaltered.  相似文献   

10.
刘师先 《中国地球化学学报》1992,11(2):178-192,T001
Granites are widespread in the Nanling region of Chian ,which were emplaced in different tectonic environments as a result of frequent and intense magmatic activity.Two evolution sequences have been distinguished:the extrusive-hypabyssal and plut onic-hypabyssal sequences.Different mecha-nisms governing the evolution,especially the differentiation, of the two sequences may account for the different mechanisms of uranium mineralization leading to the formation of various types ura-nium deposits in the Nanling region.  相似文献   

11.
辽宁鞍本地区弓长岭型富铁矿成矿的垂直分带   总被引:2,自引:0,他引:2  
张湖 《地球化学》1982,(3):260-269
The high-grade iron deposits of the Gongchangling type occur in the Archaeozoic Anshan Group of this region and are classified as stratabound deposits. They underwent stages of sedimentation, regional metamorphism, and hydrothermal enrichment during the course of formation. Hydrothermal enrichment is notable in the vertical zoning pattern, i.e., from the bottom upwards, zone A hlgh-grade magnetite ore; zone B low-grade magnetite ore; zone C transition zone between hematite and magnetite ore ; zone D low-grads hematite ore ; zone E alterated cover. Through the vertical profile of the orebody, regular variations can be recognized in iron concentration, in the characteristics of country rock alteration, the ore-controlling structure and the properties of the hydrothermal ore-forming fluids. A two-fold source, deep hot brines and shallow thermal groundwater, is suggested for the origin of the ore-formlng hydrothermal fluids. The two fluids, mixed in varying proportions, are responsible for the various geochemical reactions during the course of ascending, exerting controls on the iron content of ore and the pattern of vertical zonation. A better understanding of the vertical zonation is expected to shed light on the exploration for such type of ore deposits.  相似文献   

12.
The theory of dissipative structures is applied in this paper to probing into the dynamics, temporal struc-tures and spatial structures of ore-forming processes and the inherent relationships among them. Areas of oreformation are large dynamic systems in development and evolution. The core of ore formation is the "onset ofore-forming processes". and the crux of it is the "transition from mineralization to ore formation". The theoryof bifurcation and theory of fluctuation make possible the access to the solution of this problem. The multiord-er or successive bifurcation of dissipative structures introduces dynamic geochemical processes into geosciencesand inverses the dynamic evolution and temporal rhythms of ore-forming processes. The localization ofdissipative structures introduces dynamic geochemical fields into geosciences and brings to light the causes andmechanisms of the formation and development of geochemical areas of ore formation (regions and zones of oreformation) and their spatial dynamic patterns.  相似文献   

13.
Based on the results of two-dimension velocity structure, 1 : 100 000 aeromagnetic anoma-ly, 1 : 200 000 bouguer gravity anomaly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China, the information of geophysical field was divided into two parts: deep- and shallow-focus fields. And then, the information of two different fields was combined with that of deep-seated ge-ology and ore deposit features. The synthetic result was adopted to analyze three-dimension structure, to probe into crust-mantle coupling effects of mineralization and dynamics of ore formation system.  相似文献   

14.
Granitic rocks, widely developed in the Lamasu copper ore region, western Tianshan were formed at 390.5±7.7 Ma according to the SHRIMP zircon U-Pb dating of the plagioclase granite porphyry. Based on the regional tectonic evolution and published chronological data of both diagenesis and mineralization, the Biezhentao- Kokirqin region was rolled into the orogen associated with the closure of Yili Ocean during early Devonian. The N-S-trending thrust faults were formed during this period and accompanied by the intrusion of granitic rocks. On this stage, the paleo-Asian Ocean Plate entered into the early collision orogenic phase and the plagioclase granite porphyry intruded (390.5±7.7 Ma) and replaced with limestone of the Mesoproterozoic Kusongmuqieke Group, Jixianian System and formed the early phase of skarn-type copper mineralization in the Lamasu region. Furthermore, the subduction-melting of Bayingou Ocean Plate during Carboniferous generated a deep-seated magmatic chamber in the Lamasu copper ore region which located in the northwestern part of the Paleozoic Biezhentao-Kokirqin island arc. The magmatic chamber segregated Cu-bearing magmas, which transported upward to the shallow earth crust along the faults or fractures and formed the Cu-hosting porphyry. According to the research on the characteristics of the ore deposit and the ore-forming environment as mentioned above, the Lamasu Cu-Zn deposit was characterized by the superposing of mineralization at different geological settings and it was skarn-porphyritic type.  相似文献   

15.
The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic(500–397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic(Late Devonian-Early Carboniferous, 385–323 Ma), are all the result of nearly N-S trending shortening and collision(according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period(385–323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period(323–260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period(323–260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to "the orogenic metallogeny hypothesis" with caution in that region.  相似文献   

16.
The Dexing porphyry copper ore mine is located in the Qin-Hang metallogenic belt between the Yangtze block and the Cathaysia block. It is a giant porphyry copper mine in China, including 3 ore districts: Tongchang, Fujiawu and Zhushahong. Our analyses of Re in molybdenite indicate that the ore-forming material of the copper ore deposits in Dexing should be mainly mantle-derived. Our study fills in a gap in the study of formation time of the Dexing copper mine, and further proves that the copper ore deposits in the three ore districts should be formed simultaneously, about 170 Ma, belonging to the early Yanshan period, and that the formation time of the copper ore deposits should be consistent with the formation time of granodiorite porphyry in which the copper ore deposits are hosted. Promising areas for seeking porphyry copper ore deposits is predicated to be the west or southwest of Dexing.  相似文献   

17.
The Great Xing’an Range(GXAR)is one of the most important metallogenic belts in China.Previous study has shown that porphyry Cu-Mo deposit distributed in the northern Great Xing’an Range formed mainly in two stages:(1)Early Ordovician,such as Duobaoshan and Tongshan deposits(Liu et al.,2017);2)Triassic-Early Jurassic,including Wunugetushan,Taipingchuan and Badaguan deposits(Tang et al.,2016).In recent years,two potential porphyry Cu-Mo deposits,Huoluotai and Xiaokele,were discovered in the Erguna Block,northern GXAR(Figs.1a–b).However,the ore formation ages and regional metallogenic regularity are ambiguous due to the lack of isotopic ages.Two zircon U-Pb ages from the ore-causative granites were reported in this paper,with the aims to constrain the metallogenic ages and provide evidence for study of the regional metallogenic regularity and ore prospect prediction.  相似文献   

18.
The Baoshan Cu-Pb-Zn polymetallic deposit is lied in the central Nanling mineralization zone,and belongs to the junction area of the Chenzhou-Linwu fault zone and the Leiyang-Linwu fault zone.It is a significant part of Nanling polymetallic deposit belt.The outcropping stratas consist of upper Devonian Shetianqiao,Xikuangshan Formation,Lower Carboniferous Menggong'ao,Shidengzi,Ceshui,and Zimenqiao Formation.Igneous rocks in the Baoshan ore area mainly comprise granodiorite porphyry.Furthermore,the radio ...  相似文献   

19.
Paleozoic Tectono-Metallogeny in the Tianshan-Altay Region, Central Asia   总被引:1,自引:0,他引:1  
The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic (500–397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic (Late Devonian-Early Carboniferous, 385–323 Ma), are all the result of nearly N-S trending shortening and collision (according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period (385–323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period (323–260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period (323–260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to “the orogenic metallogeny hypothesis” with caution in that region.  相似文献   

20.
Tungsten ore resources are abundant in China with relatively complete types of deposits. Skarn type and quartz vein type deposits are dominated in the tungsten resources, whereas quartz vein type wolframite deposits are most important in terms of exploitation and utilization. Skarn type tungsten deposits are concentratedly distributed in the central Nanling region, such as South Hunan, South Anhui and the eastern Qinling region, while quartz vein type tungsten deposits occur mainly in South China, such as West Fujian, South Jiangxi, North Guangdong and South Hunan. The most important metallogenic epoch of tungsten is the Mesozoic, while the metallogenic tectonic setting is featured by an intracontinental environment after orogeny with sever tectonic movements, deep-seated faults and frequent magmatic activities, especially Mesozoic granitoids closely related to tungsten-tin mineralization. 22 metallogenic series of ore deposits characterized by or significantly related to tungsten were defined based on precise statistic information of 1199 tungsten mining areas and thorough the summary of metallogenic regularities. Based on studies of the metallogenic regularity of tungsten deposits, skarn type (or greisen type), quartz vein type and massif-type of tungsten deposits are thought to be the key prediction types. 65 tungsten-forming belts and 22 key ore concentration areas were ascertained and a distribution map of tungsten-forming belts of China was compiled, which provided a theoretical basis for evaluation and prediction of potential tungsten resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号