首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turnagain Arm is a macrotidal fjord‐style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio–estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap–spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well‐preserved apogean–perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well‐developed neap–spring cyclicity is possible because of the near‐complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick–thin spring cycles encoding the apogean and perigean tidal cycle. The apogean–perigean signal was not observed in subsequent years.  相似文献   

2.
Evolution and mechanics of a Miocene tidal sandwave   总被引:3,自引:0,他引:3  
A remarkable exposure of Miocene marine molasse in western Switzerland records the evolution of a tidal sandwave over a period of approximately 2 1/2 months. The sandwave is composed of tidal ‘bundles’ in which a sandwave reactivation stage and full vortex stage can be recognized for the dominant flow (ebb tide) and a rippled flood apron overlain by high water drape for the reversed flow. Bundle thicknesses vary systematically through neap–spring cycles, with a periodicity of 27 demonstrating the semi-diurnal lunar control of sedimentation. Waves were an additional component, especially when superimposed on flood tides, producing near-symmetrical combined-flow ripple marks in the flood apron. Tidal current velocities are estimated using critical shear velocities for entrainment, the ripple-dune transition and the dune-plane bed transition. Using appropriate estimates of roughness lengths and a logarithmic velocity law, maximum tidal speeds at 1 m above the bed were approximately 0·6 m sec?1 for ebbs and up to 0·5 m sec?1 for floods. The enhancement by waves of bed shear stress (τwc/τ of approximately 2 for 1 m high waves) under flood currents implies flood tidal velocities closer to 0·2–0·3 m sec?1. Peak instantaneous bedload sediment transport rates using a modified Bagnold equation are nearly 5 times greater under ebb tides than floods. The average net sediment transport rate at springs (0·04 kg m?1 sec?1) is over 10 times greater than at neaps (0·002 kg m?1 sec?1). Comparison with transport rates in modern tidal environments suggests that the marine molasse of Switzerland was deposited under spatially confined and relatively swift tidal flows not dissimilar to those of the present Dutch tidal estuaries.  相似文献   

3.
根据我国东部海岸现代潮坪沉积物和古代潮汐沉积物的研究,新发现一种潮汐沉积物所具有的特殊沉积构造,这种沉积构造可区分出三种类型,特征明显,易于鉴定,反映潮汐运动规律,命名为“潮汐周期层序”。用这种沉积构造作为古代潮汐沉积物的鉴定标志,将大大提高鉴定的可靠性。  相似文献   

4.
This research investigates the dynamics of the axial tidal flow and residual circulation at the lower Guadiana Estuary, south Portugal, a narrow mesotidal estuary with low freshwater inputs. Current data were collected near the deepest part of the channel for 21 months and across the channel during two (spring and neap) tidal cycles. Results indicate that at the deep channel, depth-averaged currents are stronger and longer during the ebb at spring and during the flood at neap, resulting in opposite water transport directions at a fortnightly time scale. The net water transport across the entire channel is up-estuary at spring and down-estuary at neap, i.e., opposite to the one at the deep channel. At spring tide, when the estuary is considered to be well mixed, the observed pattern of circulation (outflow in the deep channel, inflow over the shoals) results from the combination of the Stokes transport and compensating return flow, which varies laterally with the bathymetry. At neap tide (in particular for those of lowest amplitude each month), inflows at the deep channel are consistently associated with the development of gravitational circulation. Comparisons with previous studies suggest that the baroclinic pressure gradient (rather than internal tidal asymmetries) is the main driver of the residual water transport. Our observations also indicate that the flushing out of the water accumulated up-estuary (at spring) may also produce strong unidirectional barotropic outflow across the entire channel around neap tide.  相似文献   

5.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

6.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   

7.
Tidal bundle sequences are the characteristic large-scale cross-bedded sets with mud drapes deposited by strongly asymmetrical bidirectional tidal currents. By means of time series analysis of the bundle thickness of such sequences, the palaeohydrodynamic processes can be reconstructed. This technique involves: (1) Fourier analysis to test the periodicity of the bundle-thickness sequence and to estimate the periods and the phases of the most important periodic components; (2) filtering analysis to resolve the bundle-thickness sequence into different components (i.e. diurnal components, random variations, neap/spring components and longer period variations) and also to estimate the relative importance (amplitude) of each component. From these analyses, useful information can be derived as to the palaeotidal regime (whether semidiurnal or mixed) and also about the possible influence of non-tidal processes, such as storms (their strength, duration, frequency and direction). Results from a subrecent and an ancient example show that tidal currents and storm-induced currents are the most important hydrodynamic processes in the transport and deposition of sediment in these shallow marine environments.  相似文献   

8.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

9.
A study of the dynamics of a marine sandwave   总被引:3,自引:0,他引:3  
The movement of the crest of a sandwave was studied using cross-sectional profiles obtained from lines of sea-bed reference stakes. Measurements were made, over a six month period, before and after flood and ebb tides in relation to both spring and neap tides and surface wave conditions. Additional observations were obtained on a daily basis, over an equinoctial neap to spring to neap tidal period, in conjunction with boundary layer flow measurements. Tracer experiments were conducted to study the dispersion of sediment from the sandwave crest. The results showed that the sandwave was relatively stable at neap tides, whilst at higher tidal ranges, the crest position oscillated with successive flood and ebb tides. Net flank erosion occurred on the less steep, upstream slope during the dominant ebb tide. This, together with increased deposition on the lee slope, caused the crest to advance. It was not possible to extrapolate sandwave migration over long periods as the tidal dynamic trends were interrupted by wind stress and surface wave activity. High particle orbital velocities, generated at the sea-bed by storm waves, caused major reductions in crestal heights. Calculated volumes of sediment eroded and accreted were used, with boundary layer flow measurements, to calculate threshold velocities for the movement of the sediment and sediment transport rates.  相似文献   

10.
The Pliocene–Pleistocene peripheral marine basins of the Mediterranean Sea in southern Italy, from Basilicata and western Calabria to northern and eastern Sicily, represent tectonically formed coastal embayments and narrow straits. Here, units of cross‐stratified, mixed silici–bioclastic sand, 25 to 80 m thick, record strong tidal currents. The Central Mediterranean Sea has had a microtidal range of ca 35 cm, and the local amplification of the tidal wave is attributed to tides enhanced in some of the bays and to the out‐of‐phase reversal of the tidal prism in narrow straits linking the Tyrrhenian and Ionian basins. The siliciclastic sediment was generated by local bedrock erosion, whereas the bioclastic sediment was derived from the contemporaneous, foramol‐type cool‐water carbonate factories. The cross‐strata sets represent small to medium‐sized (10 to 60 cm thick) two‐dimensional dunes with mainly unidirectional foreset dip directions. These tidalites differ from the classical tidal rhythmites deposited in mud‐bearing siliciclastic environments. Firstly, the foreset strata lack mud drapes and, instead, show segregation of siliciclastic and bioclastic sand into alternating strata. Secondly, the thickness variation of the successive silici–bioclastic strata couplets, measured over accretion intervals of 2 to 3 m and analysed statistically, reveal only the shortest‐term, diurnal and semi‐diurnal tidal cycles. Thirdly, the record of diurnal and semi‐diurnal tidal cycles is included within the pattern of neap‐spring cycles. Differences between these sediments and classical tidal rhythmites are attributed to the specific palaeogeographic setting of a microtidal sea, with the tidal currents locally enhanced in peripheral basins. It is suggested that this particular facies of mud‐free, silici–bioclastic arenite rhythmites in the stratigraphic record might indicate a specific type of depositional sub‐tidal environment of straits and embayments and the shortest‐term tidal cycles.  相似文献   

11.
Observations are presented of the transverse and vertical structure of residual water, salt and sediment transport in the upper reaches of a partly mixed estuary. Measurements were made over spring and neap tidal cycles at three sections. The residual transport for each variable exhibited a characteristic transverse structure. This structure is interpreted in terms of fundamental physical processes. The results are used to estimate the relative importance of transverse shear, vertical shear and tidal pumping to the axial dispersion of salt and sediment.  相似文献   

12.
新生代西昆仑隆升的地层学和沉积学记录   总被引:16,自引:2,他引:16  
金小赤  王军等 《地质学报》2001,75(4):459-467
西昆仑北坡的新生代沉积在很大程度上良好地记录了新生代西昆仑的隆升过程。区域性不整合面和沉积界面记录了隆升的阶段性;沉积环境变化反映了山体和盆地在格局上的变化;沉积物厚度、粒度变化显示了隆升的幅度和速率。就西昆仑的情况看,海相环境(塔里木海湾)由晚白垩世持续到渐新世,尽管此时海湾已退缩到西部。在此期间,形成了石膏层、瓣鳃类介壳灰岩和杂色砂泥质沉积。中新世全面出现了陆相沉积。中新世2000-3000m的沉积厚度表明了相对较高的隆升速率。从中新世后期开始的厚达2000-3000m的磨拉石沉积,其粒度向上加大,显示从中新世后期到早更新世隆升速率高而且是加速的。磨拉石沉积被早更新世的一次强烈的构造脉动所打断,它使磨拉石沉积和较老的沉积在许多地方高角度向盆地方向倾斜甚至直立、倒转。水平盖在磨拉石和更老地层之上的中-晚更新世河流和冲积扇机粗粒沉积是重新隆升的标志,亦可视为磨拉石沉积的继续。由昆仑山流向塔里木盆地的河流将中-上更新统及更老沉积切割50-100m以上,表明全新世以来的隆升速率是相当高的。  相似文献   

13.
The Late Caledonian to Early Hercynian North Qilian orogenic belt in northwestern China is an elongate tectonic unit situated between the North China plate in the north and the Qaidam plate in the south. North Qiilan started in the latest Proterozoic to Cambrian as a rift basin an the southern mar-gin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a fardand basin from Silurian to the Early and Middle Devonian. The Early Silurian fly-sch and sulmmrine alluvial fan, the Middle to Late Silurian shallow marine to tidal flat deposits and the Early and Middle Devonian terrestrial.molasse are developed along the corridor Nansimn. The shallo-wing-upward succession from subabyssal flysch, shallow marine, tidal flat to terrestrial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stake to molasse stake during the Silurian and Devonian time.  相似文献   

14.
Estuaries, the interface of interaction of fluvial discharge and marine action serve as temporary repositories of materials (solid and dissolved) before finally exporting them to sea. This interchange of material is dependant on a range of factors such as those due to tidal variation, fluvial flows and estuarine morphodynamics. The efficacy of transfer of materials to the marine environment is important for estuarine health particularly in estuaries located in highly developed areas such as the major coastal metropolitan areas of many countries. This study assesses this efficacy for three estuaries of the eThekwini Municipality (TM) of the city of Durban, South Africa which maintains an open mouth status, ensuring tidal exchange through the year. The net flux of nitrates was measured for these estuaries on a seasonal basis for both spring and neap tides. Results indicate that although there is a net export of nitrates to the nearshore, there were instances, particularly on the spring tide, when a net import of nitrates into the estuary occurred. Data analysis reveal summer and neap tide flux dominance for the Tongati and Mgeni estuaries whilst the Isipingo Estuary exhibited larger flux variance for spring tides and the spring season. The origin of the latter is likely derived from unusually high biotic decomposition at sea and/or the longshore transport of decomposing sewage outfall. This creates an added dimension for consideration in estuarine management plans. Taking all three estuaries studied into consideration, a net export of nitrates for all seasons for the TM was measured with a clear seasonal influence detected where high rainfall seasons led to greater export as a consequence of greater fluvial flows, erosion and leaching of agricultural lands and, longer ebb duration and flows.  相似文献   

15.
Monitoring of sedimentation and erosion was conducted on an open coastal tidal flat on the southern flank of the Yangtze delta. Various elevation references were established in the intertidal zone and monitored intensively for 4 months in order to examine fortnightly and seasonal (calm weather and storm season) sedimentation and erosion. Longer term (100 years) sedimentation and preservation were investigated through examination of cores and trenches. Two different vertical grouping patterns of tidal bedding were distinguished with thinner and thicker sandy laminae. The number of sand-dominated layers and individual muddy and sandy lamina in the cores were compared with theoretically derived sedimentation rates in order to assess long-term preservation potential. Waves, especially high storm waves, have a significant influence on sedimentation and the preservation of intertidal deposits along the open-coast tidal flat. Monitoring during one season indicated that the sand-dominated layer was directly related to storm deposits, while the mud-dominated layer was deposited during calm weather conditions. The variation in sandy lamina thickness was not related to spring–neap tidal cycles during the monitoring period. The assumption of 100% preservation of sandy laminae deposited during every tidal cycle, which has been assumed in previous time-series analyses for the identification of palaeotidal periodicity, was found to be unrealistic along this open-coast tidal flat. Preservation potential decreases as temporal scale increases. During one neap–spring tidal cycle, the preservation potential of individual sandy and muddy laminae was of the order of 10%. Over a period of 100 years, the estimated preservation potential of individual laminae, including both calm weather and storm deposits, decreased to 0·2%. The 100-year preservation potential of storm-induced, sand-dominated layers was estimated to be of the order of 10%.  相似文献   

16.
A radioisotope tracer (82Br) was injected into a sand aquifer adjacent to a tidal creek at Hat Head, New South Wales, Australia. The injection was timed to coincide with the falling limb of a spring tide in August 2001 and was repeated in July 2002 during a period of neap tides. The tracer movement was detected using gamma logging and fixed gamma detectors in a bore 0.9 m from an injection bore and in a line approximately perpendicular to the creek. Movement of the tracer was detected by comparing measured gamma activity with calibrated activities determined under laboratory conditions. Net movement of the tracer indicated approximately 0.001 m/day laterally towards the creek and 0.07 m/day vertically upward during spring tide conditions. This pattern is reversed during neap tide conditions with little net vertical movement but horizontal movement of 0.15 m/day. The measurements indicated an oscillatory motion coinciding with the tide but lagging the tide by approximately 4.5–6.5 h. The vertical flow during spring tides indicates that vertical movement of the saline interface occurs and results in mixing of different water types beneath the banks of the creek.  相似文献   

17.
Measuring fluxes of greenhouse gases (GHGs) is fundamental to estimating their impact on global warming. We examined diurnal variations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) vertical fluxes in a tidal marsh ecosystem. Measurements were recorded on neap and spring tide days in April and September 2010 in the Shanyutan wetland of the Min River estuary, southeast China. Here, we define a positive flux as directing into the atmosphere. CH4 fluxes on the diurnal scale were positive throughout, and CH4 emissions into the atmosphere on neap tide days were higher than on spring tide days. CH4 releases from the marsh ecosystem on neap tide days were higher in the daytime; however, on spring tide days, daily variations of CH4 emissions were more complex. The marsh ecosystem plays a twofold role in both releasing and assimilating CO2 and N2O gases on the diurnal scale. Average CO2 fluxes were positive on the daily scale both on neap and spring days and were greater on the neap tide days than on spring tide days. Diurnal variations of N2O fluxes fluctuated more. Over the diurnal period, soil temperature markedly controlled variations of CH4 emissions compared to other soil factors, such as salinity and redox potential. Tidal water height was a key factor influencing GHGs fluxes at the water–air interface. Compared with N2O, the diurnal course of CO2 and CH4 fluxes in the marsh ecosystem appeared to be directly controlled by marsh plants. These results have implications for sampling and scaling strategies for estimating GHGs fluxes in tidal marsh ecosystems.  相似文献   

18.
Neogene strata of the northern part of the Pegu (Bago) Yoma Range, Central Myanmar, contain a series of shallow marine clastic sediments with stratigraphic ages ranging from the Early to Late Miocene. The studied succession (around 750 m thick) is composed of three major stratigraphic units deposited during a major regression and four major transgressive cycles in the Early to Late Miocene. The transgressive deposits consist of elongate sand-bars and broad sand-sheets that pass headward into mixed-flats of tidal environments. Marine flooding in transgressive deposits is associated with coquina beds and allochthonous coral-bearing sandy limestone bands. Major marine regressions are associated with lowstand progradation of thick estuary point-bars passing up into upper sand-flat sand bodies encased within the tidal flat sequences and lower shoreface deposits with local unconformities. The succession initially formed in a large scale incised-valley system, and was later interrupted by two major marine transgressions in the generally regressive or basinward-stepping stratigraphic sequences. Successive sandbodies were formed during a sea-level lowstand and early stage of the subsequent relative rise of sea level in a tide-dominated estuary system in the eastern part of the Central Myanmar Tertiary Basin during Early to Late Miocene times.  相似文献   

19.
Hydrographic patterns and chlorophyll concentrations in the Columbia River estuary were compared for spring and summer periods during 2004 through 2006. Riverine and oceanic sources of chlorophyll were evaluated at stations along a 27-km along-estuary transect in relation to time series of wind stress, river flow, and tidal stage. Patterns of chlorophyll concentration varied between seasons and years. In spring, the chlorophyll distribution was dominated by high concentrations from freshwater sources. Periods of increased stream flow limited riverine chlorophyll production. In summer, conversely, upwelling winds induced input of high-salinity water from the ocean to the estuary, and this water was often associated with relatively high chlorophyll concentrations. The frequency, duration, and intensity of upwelling events varied both seasonally and interannually, and this variation affected the timing and magnitude of coastally derived material imported to the estuary. The main source of chlorophyll thus varied from riverine in spring to coastal in summer. In both spring and summer seasons and among years, modulation of the spring/neap tidal cycle determined stratification, patterns of mixing, and the fate of (especially freshwater) phytoplankton. Spring tides had higher mixing and neap tides greater stratification, which affected the vertical distribution of chlorophyll. The Columbia River differs from the more tidally dominated coastal estuaries in the Pacific Northwest by its large riverine phytoplankton production and transfer of this biogenic material to the estuary and coastal ocean. However, all Pacific Northwest coastal estuaries investigated to date have exhibited advection of coastally derived chlorophyll during the upwelling season. This constitutes a fundamental difference between Pacific Northwest estuaries and systems not bounded by a coastal upwelling zone.  相似文献   

20.
The effects of fortnightly, semidiurnal, and quaterdiurnal lunar tidal cycles on suspended particle concentrations in the tidal freshwater zone of the Seine macrotidal estuary were studied during periods of medium to low freshwater flow. Long-term records of turbidity show semidiurnal and spring-neap erosion-sedimentation cycles. During spring tide, the rise in low tide levels in the upper estuary leads to storage of water in the upper estuary. This increases residence time of water and suspended particulate matter (SPM). During spring tide periods, significant tidal pumping, measured by flux calculations, prevents SPM transit to the middle estuary which is characterized by the turbidity maximum zone. On a long-term basis, this tidal pumping allows marine particles to move upstream for several tens of kilometers into the upper estuary. At the end of the spring tide period, when the concentrations of suspended particulate matter are at their peak values and the low-tide level drops, the transport of suspended particulate matter to the middle estuary reaches its highest point. This period of maximum turbidity is of short duration because a significant amount of the SPM settles during neap tide. The particles, which settle under these conditions, are trapped in the upper estuary and cannot be moved to the zone of maximum turbidity until the next spring tide. From the upper estuary to the zone of maximum turbidity, particulate transport is generated by pulses at the start of the spring-neap tide transition period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号