共查询到20条相似文献,搜索用时 0 毫秒
1.
在自回归模型求解中,设计矩阵和观测值均存在误差,传统的最小二乘法不能很好地解决这一问题。本文提出了一种顾及设计矩阵误差的AR模型新解法,通过引入虚拟观测值,使观测向量与设计矩阵不仅同源而且带误差的元素个数相同,然后通过对观测方程进行等价变换巧妙实现了在最小二乘框架下求解自回归问题。利用模拟数据及实测数据分别对新算法进行了内符合精度检验,并利用实测数据对新算法进行外符合精度检验,结果表明新算法得到的结果显著优于奇异值分解(singular value decomposition,SVD)解法及传统最小二乘解法,验证了算法的精度和有效性。 相似文献
2.
介绍总体最小二乘的奇异值分解法(SVD)和混合总体最小二乘法(LS-TLS),基于间接平差原理推导一种总体最小二乘迭代解法,可以用来解决系数矩阵含常数列的总体最小二乘平差问题。最后分别对系数矩阵不含常数列和系数矩阵含常数列的算例进行验证,得到的结果与采用奇异值分解法和混合总体最小二乘法计算的结果相同,表明算法的有效性。 相似文献
3.
4.
5.
对于在实际应用中的直线回归问题,存在着因自变量和因变量选取不同拟合结果存在差异的情况,文中采用了一种线性拟合参数估计的新方法,即整体最小二乘法。文章在描述普通最小二乘和整体最小二乘原理的基础上,并对比其异同,并采用奇异值分解的方法来求解整体最小二乘问题。算例结果表明,采用整体最小二乘方法估计线性回归参数的精度明显高于常规最小二乘法,是一种值得借鉴的算法。 相似文献
6.
总体最小二乘问题解算的两种方法比较分析 总被引:1,自引:0,他引:1
介绍了求解总体最小二乘问题的奇异值分解法和基于拉格朗日极值的迭代法,比较了两种方法在直线拟合中的应用,分析了二者的区别与联系。 相似文献
7.
本文探究了总体最小二乘的3种方法,包括奇异值分解、最小奇异值方法和迭代法,并且对3种方法进行比较。在模型推导的基础上,文中对3种总体最小二乘法在曲线和曲面拟合中求解的参数及其精度进行了比较分析。通过与最小二乘法的比较表明:总体最小二乘法得到的拟合结果更加稳健,并且发现迭代法和奇异值分解方法的结果是一样的;最小奇异值方法的结果欠优。 相似文献
8.
不同空间坐标系在进行坐标转换过程中,利用整体最小二乘(TLS)构建高斯-马尔科夫(Gauss-Markov)模型求解布尔莎-沃尔夫(Bursa-Wolf)七参数模型时,存在已知控制点含有粗差、模型系数阵固定常数参与残差改正的问题.通过对系数矩阵中含误差参数进行改正,并结合稳健估计的方法,对TLS进行迭代定权,解决了已知... 相似文献
9.
误差向量的方差-协方差阵是一般对称正定矩阵下的附不等式约束加权整体最小二乘平差模型,研究了其参数估计和精度评定问题。首先,将残差平方和极小化函数在整体最小二乘准则下转化为只包含模型参数的目标函数,同时将所有的不等式约束表示成一个等价的凝聚约束函数,并运用乘子罚函数策略将不等式约束加权整体最小二乘平差问题转化为相应的无约束最优化问题,并用BFGS方法求解。然后,将误差方程和约束函数线性展开,推导了最优解和观测量间的近似线性函数关系,运用方差-协方差传播律得到了最优解的近似方差。最后,用数值实例验证了方法的有效性和可行性。 相似文献
10.
11.
12.
13.
顾及粗差的混合最小二乘平差实验分析 总被引:2,自引:0,他引:2
通过详细介绍总体最小二乘法以及其与经典最小二乘法的关系,引出综合了经典最小二乘法与总体最小二乘法的混合最小二乘平差法。为了研究混合最小二乘法的优劣,本文设计一套比较混合最小二乘法与经典最小二乘法的实验方案。通过实验结果可知,混合最小二乘法并非总优于经典最小二乘法,只有当系数阵误差比观测值误差大或略小时,混合最小二乘法才始终优于经典最小二乘法。 相似文献
15.
针对加权总体最小二乘平差模型中系数矩阵具有结构性的问题,该文设计了一种顾及系数矩阵结构性的加权总体最小二乘迭代解法:首先,利用非线性最小二乘平差方法将总体最小二乘模型线性化;然后,采用结构矩阵的方法顾及系数矩阵的重复元素和常数项,通过间接平差的原理推导了顾及系数矩阵结构性的加权总体最小二乘迭代公式,可适用于加权总体最小二乘的参数估计;最后,通过算例分析并与其他算法进行比较,验证了该算法的有效性和可行性。 相似文献
16.
17.
18.
在应用整体最小二乘法求解自回归模型的参数时,针对传统的SVD方法和迭代法并没有顾及到系数矩阵和观测向量构成的增]’一矩阵中不同位置上相同元素的改正数却不相同这一不足,推导了一种新的迭代解法,有效地解决了传统方法的不足,使得增]’一矩阵中不同位置的同一元素具有相同的改正数,更加符合实际情况且平差精度也有所提高。最后通过具体的算例,验证了木文方法的可行性和有效性。 相似文献
19.
20.
最小二乘配置最初是在组合各种资料来研究地球形状与重力场的一种数学方法,目前最小二乘配置已经在测绘数据处理中得到广泛应用。本文首先分析了目前采用的最小二乘配置法解算方法,在讨论了矩阵的奇异值分解(Singular Value Decomposition,SVD)方法的基础上,推导得出了矩阵SVD分解与广义逆矩阵的关系,得出了可以直接利用SVD分解求解矩阵的Moore-Penrose广义逆,并推导了应用SVD分解求解最小二乘配置的估值计算公式和精度估算公式,最后通过重力异常实例进行了计算,得出矩阵的SVD分解用于最小二乘配置解算的正确性和可行性,为最小二乘配置的求解提供了一种新方法。 相似文献