首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperate shelf carbonates form in cool marine waters and have skeletal and mineralogical compositions which are different from their tropical counterparts. They commonly lack non-skeletal grains and are often composed of low- and high-magnesium calcite with subordinate aragonite. Many of the aragonitic components found in tropical carbonates, such as corals, ooids, blue-green algae and lime mud, are absent.

Temperate shelf carbonates undergo diagenesis in marine waters with lower carbonate saturation than do tropical carbonates, and are exposed to cool climates with moderate to low rainfall. Marine cementation is rare because of low carbonate saturations in the surrounding waters. However, aragonite and high-magnesium calcite cements have been reported forming under specialized conditions associated with biogenic precipitation, submarine methane and sulphate-reducing bacteria, and more commonly in the intertidal environment where evaporation has increased carbonate concentrations.

In Pleistocene and Tertiary temperate shelf carbonates from southeastern Australia, evidence of marine diagenesis is rare to absent. Diagenetic stabilization of aragonite and high-magnesium calcite has taken from 80,000 y to 1 My, or longer, during subaerial exposure. This is slower than rates reported from tropical climates. A general lack of aragonite in some facies within these temperate carbonates leads to a lack of secondary porosity and only sparse low-magnesium calcite cement, even after prolonged fresh-water diagenesis. However, with lengthy exposure and under the right climatic conditions, karstic solution and calcrete precipitation can occur.

In sequences containing siliciclastic clays, pyrite and glauconite, abundant iron is present in interstitial waters leading to the precipitation of ferroan calcite cements in the phreatic and shallow burial environments, and to the substitution of iron for magnesium in stabilizing high-magnesium calcite skeletal material.

A unique void-filling, micritic internal sediment occurs in discrete layers in many of the Tertiary temperate shelf carbonate sequences in southeastern Australia. This internal sediment is localized as a pore-filling material above permeability barriers such as fine-grained sediments or volcanics, and above paleo-water tables which formed during periods of subaerial exposure. It is a feature of the vadose zone and lithifies to form a dense micritic low-magnesium calcite cement with characteristic pink/brown coloration, often associated with erosion surfaces and nodule beds.

Dolomite is uncommon in the southeastern Australian temperate shelf carbonates. It forms associated with preferential fluid pathways or mixing zones. Ferroan dolomite forms in siliciclastic clay-rich carbonates in the shallow burial environment. The ubiquitous fine, evaporite-related dolomite so common in tropical carbonates is absent.  相似文献   


2.
Temperate shelf carbonate sediments in the Cenozoic of New Zealand   总被引:1,自引:0,他引:1  
Shelf limestones are widely distributed in New Zealand Cenozoic sequences and are especially well developed in the Oligocene. Detailed field and laboratory work on several Oligocene occurrences, and reconnaissance field-work at most other sections have elucidated the major characteristics of the environment, texture, composition and diagenesis of these sediments. Several generalizations emerge which contrast with the commonly accepted characteristics of shallow marine carbonate sedimentation established from studies of tropical and subtropical deposits. The limestones are either calcarenites or, less commonly, calcilutites and, in general, these two lithologies are mutually exclusive, both in time and space. The allochems and interparticle carbonate mud (where developed) in calcarenitic limestones consist almost exclusively of fragmented skeletal material derived primarily from bryozoan, echinodermal, benthic foraminiferal, barnacle, brachiopod, bivalve and coralline red algal tests. The calcilutitic limestones consist mainly of whole and disintegrated tests of pelagic foraminifers and coccolithophorids. Non-skeletal carbonate components such as ooids, pellets and aggregates are conspicuously absent from both lithologies. Reefal structures are also absent or rare and are mainly oyster reefs. The limestones commonly contain a significant content of terrigenous material and/or glauconite and at the stratigraphic level the limestones are intimately associated with terrigenous formations. The distribution of the carbonate sediments has been governed mainly by rate of supply of river-derived terrigenous material, by subsequent dispersal patterns of this material over the shelf, and by current sorting. As a consequence of selective grain transport, bedding in the limestones is often defined by the cyclic alternation on a wide range of scales of carbonate units that are relatively enriched and relatively impoverished in terrigenous material. The primary (carbonate) mineralogy of the carbonate sediments was completely dominated by magnesium calcite and/or calcite with only small amounts of aragonite and no dolomite or associated evaporite minerals. The metastable magnesium calcite and aragonite grains were probably altered on, or close below, the shallow sea-floor. Among other factors, transformation was encouraged by the absorption of magnesium in pore waters by montmorillonitic clays and by the complete oxidation of all organic matter in the bottom sediments. Magnesium calcite grains were stabilized by texturally non-destructive incongruent dissolution, but aragonite was often dissolved without trace from the sediment, especially in grainstones. Thus submarine diagenesis has been characterized by selective dissolution phenomena. Cementation by granular and syntaxial rim orthosparite of calcite and/or ferroan calcite composition occurred mainly during shallow subsurface burial and was associated with the intergranular solution of calcitic skeletal fragments, especially at those levels in the sediment relatively enriched in terrigenous material. This lithification process has worked to accentuate and modify original litho-logic differences and sedimentary structures in the primary sediments and has produced a kind of rhythmic vertical alternation of less well cemented, microstylolitized, impure limestone beds (‘cement-donor’ beds) and well cemented, more open textured, purer limestone beds (‘cement-receptor’ beds). The New Zealand limestones formed between latitudes 60° S and 35° S under generally cool temperate to warm temperate climate conditions. Oxygen isotopes suggest that surface waters were mainly significantly cooler than 20°C, so that shelf waters may have experienced extended periods of undersaturation with respect to calcium carbonate. Generally open circulation patterns maintained near normal salinity values over the entire shelf platform. Calculated sedimentation rates for the New Zealand carbonate sediments are generally very low (< 5 cm/1000 years). Periods of more active deposition commonly alternated with longer periods of non-deposition and by-passing or erosion. It is concluded that many characteristics of the New Zealand shelf limestone occurrences are explained best by a temperate latitude model of shallow marine carbonate sedimentation.  相似文献   

3.
Early diagenetic phosphate cements are described from the Albian condensed glauconitic limestone of the Tatra Mountains, Western Carpathians with regard to their macro- and micromorphology, distribution, classification, and genesis. The cements occur within stratigraphically condensed semi-pelagic foramini-feral-glauconitic layers and are associated with mature hardgrounds within the Tatra Albian limestone. Phosphate cement fabrics consist of crypto- to microcrystalline carbonate-fluorapatite, and they occur as: (i) rim envelopes, (ii) infillings of intraparticle porosity, (iii) rim cement, (iv) multiple rim cement, (v) palisade fabric and (vi) cluster cement. Micromorphological variability of the cement fabrics results from varying texture of the cemented sediment, the nature of original porosity, as well as from presence of associated microbial fabrics. The microbial fabrics are interpreted as fossilized coccoid cyanobacteria. Phosphate cementation developed under peculiar early diagenetic conditions within semi-closed microenvironments rich in organic matter in the marine phreatic environment. The cementation contributed to the formation of phosphatic fossils and hardgrounds. The accretion of the cements was due to concentration of biologically uptaken phosphorus near the sediment/water interface, enrichment of pore fluids with respect to phosphate, and its precipitation within restricted microenvironments. Phosphate cementation post-dated seafloor formation of pelletal glauconite but predated partial decomposition of organic matter as well as dissolution or neomorphism of aragonite and high-Mg calcite. Phosphate cementation occurred on a carbonate platform following the submersion of Urgonian reefal build-ups. Episodes of phosphate cementation were repeated during the sedimentation of the Tatra Albian limestone as a response to rapid relative sea-level rises and increased influence of nutrient-rich Tethyan waters.  相似文献   

4.
Middle and Upper Eocene biogenic sediments in the Willunga Embayment along the eastern margin of the St Vincent Basin are a series of warm‐temperate limestones, marls and spiculites. The Middle Eocene Tortachilla Limestone is a thin, coarse grained, quartzose, biofragmental, bryozoan–mollusc calcarenite of stacked metre‐scale depositional cycles with hardground caps. Lithification, aragonite dissolution and the filling of moulds by sediment and cement characterize early marine‐meteoric diagenesis. Further meteoric diagenesis at the end of Tortachilla deposition resulted in dissolution, Fe‐oxide precipitation and calcite cementation. The Upper Eocene Blanche Point Formation is composed of coccolith and spiculite marl and spiculite, all locally rich in glauconite, turritellid gastropods and sponges. Decimetre‐scale units, locally capped by firmgrounds, have fossiliferous lower parts and relatively barren upper parts. Carbonate diagenesis is minor, with much aragonite still present, but early silicification is extensive, except in the spiculite, which is still opal‐A. All depositional environments are interpreted as relatively shallow water: high energy during the Middle Eocene and low energy during the Upper Eocene, reflecting the variable importance of a basin‐entrance archipelago of carbonate highs. Marls and spiculites are interpreted to have formed under an overall estuarine circulation system in a humid climate. Basinal waters, although well mixed, were turbid and rich in land‐derived nutrients, yet subphotic near the sea floor. These low‐energy, inner‐shelf biosiliceous sediments occur in coeval environments across other parts of Australia and elsewhere in the rock record, suggesting that they are a recurring element of the cool‐water, carbonate shelf depositional system. Thus, spiculites and spiculitic carbonates in the rock record need be neither deep basinal nor polar in origin. The paradox of a shallow‐water carbonate–spiculite association may be more common in geological history than generally realized and may reflect a characteristic mid‐latitude, humid climate, temperate water, palaeoenvironmental association.  相似文献   

5.
LAVOIE  & ASSELIN 《Sedimentology》1998,45(5):817-832
Upper Ordovician (Caradocian) carbonates of eastern North America were deposited along the Iapetus continental margin and record a transition from warm- to cool-water settings despite this margin having been within the southern hemisphere tropical belt. This event has been documented from Virginia (USA) to southern Québec (Canada) although, not previously from areas close to the palaeoequator. Field, petrographic and major element geochemistry data have been gathered from the poorly-known Upper Ordovician carbonate succession outcropping in the Lac Saint-Jean outlier in central Québec. The succession consists of a lower siliciclastic formation (Tremblay) overlain by three limestone formations (Simard, Shipshaw and Galets) and capped by shales (Pointe-Bleue Shale). From macro- and microfaunal evidence, carbonate sedimentation occurred during the late Caradoc and is younger than the early- to mid-Caradoc carbonate succession present farther south. Relative sea level fluctuations recorded in the sediments suggest an overall sea level rise briefly halted by a minor end-Caradocian sea level fall. The lower limestone formation (Simard) consists of muddy sediments with algal-coral-stromatoporoid boundstones; green algae are abundant. This unit reflects low energy sedimentation on a shallow warm-water carbonate ramp colonized by a diverse chlorozoan fauna. The upper limestone formation (Galets) is typified by coarse-grained bioclastic sediments punctuated by numerous phosphate-rich hardgrounds with evidence for high energy shallow marine conditions. Faunas were dominated by crinoids and bryozoans. This unit represents high energy sedimentation on a cool shallow water carbonate ramp colonized by a brynoderm faunal association. Between both units, a deeper marine (outer shelf) limestone formation (Shipshaw) was developed. In the Lac Saint-Jean area, a transition from warm- to cool-water carbonate ramps occurred in latest Caradoc times and is litho- and biofacies-wise, similar to what is documented for lower Caradocian limestones present farther south. Upwelling of nutrient-rich cool bottom oceanic waters was a probable cause for this transition.  相似文献   

6.
Comparison of ultrastructures in Pliocene periplatform carbonates from the Bahamas with Silurian limestones from Gotland (Sweden) reveals that despite the differences in primary sediment composition and age, they reflect a similar mechanism of lithification. In both sequences calcite microspar was formed as a primary cement at an early stage of marine burial diagenesis. Neither significant compression nor meteoric influence are necessary for the formation of calcite microspar. A model is proposed for the process of microsparitic cementation of fine-grained aragonite needle muds comprising four stages: (1) unconsolidated, aragonite-dominated carbonate mud; (2) precipitation of microspar that engulfs aragonite needles; (3) dissolution of aragonite, resulting in pitted surfaces of the microspar crystals; and (4) slight recrystallization. Our results contradict the widespread opinion that microspar necessarily is a product of secondary recrystallization of a previously lithified micrite.  相似文献   

7.
A laterally extensive calcrete profile has been identified in the Late Asbian (Lower Carboniferous) shallow marine shelf limestones of the Llangollen area, North Wales. The upper surface of the profile is defined by a laterally discontinuous palaeokarstic surface and by laminated calcareous crusts which developed within the underlying limestone. The profile contains a unique series of early pore-filling vadose cements which only occur down to 1 m below the palaeokarstic surface. Cathodoluminescence reveals that these cements pre-date the late pore-filling meteoric phreatic cements which occur throughout local Asbian lithologies. A spar cement stratigraphy has been established for the calcrete profile. Subaerial vadose cements comprise two generations of non-luminescent cement, followed by a brightly luminescent generation which occasionally shows an acicular habit. This needle-fibre calcite represents the final stage of vadose cementation. Precipitation of vadose cements was contemporary with subaerial alteration and micritization of the limestone. Textures, visible only with cathodoluminescence, provide evidence of recurrent periods of fabric dissolution. The most extensive phase of dissolution occurred immediately after the precipitation of the non-luminescent subaerial vadose cements. Several different textures have been recorded, each reflecting the morphology of a partially dissolved substrate. Dissolution textures are generally confined to the walls of the larger pores and to early brecciation fractures. These probably acted as fluid pathways in the calcrete during early subaerial diagenesis. Much of the non-marine micrite in the calcrete profile appears as needle-fibre calcite under cathodoluminescence. This acicular calcite was probably formed in response to localized supersaturation of meteoric pore fluids caused by periods of near-surface evaporation. Since needle-fibre luminescence is strongly variable, these ambient conditions are not believed to have directly controlled the activator ion concentrations of cementing pore waters. Needle-fibre calcite is considered to be a cement precipitate which has almost completely recrystallized to micrite, probably during the late stages of subaerial diagenesis. Two generations of subaerial micrite which define a ‘micrite stratigraphy’, have been distinguished under cathodoluminescence. Reconstructing the diagenetic history of this ancient calcrete profile has revealed that subaerial alteration was multistaged, with many diagenetic processes acting simultaneously during a single phase of emergence.  相似文献   

8.
华南中二叠统栖霞组沉积了一套特殊的碳酸盐岩地层, 该套地层富含有机质和硅质结核, 是中国南方四套区域性海相烃源岩之一.在野外露头上, 灰岩-泥灰岩韵律层因为其抗风化能力不同而受到广泛关注, 其在整个华南栖霞组分布广泛.其中, 灰岩层富含各种生物碎屑, 主要包括钙藻、有孔虫和腹足, 其次还有腕足, 棘皮类和介形虫, 偶尔见苔藓虫和三叶虫.灰岩层中较好的保存了易碎的钙质藻类, 说明灰岩的胶结作用发生在成岩早期, 没有明显压实作用的痕迹.泥灰岩以粒泥生物碎屑灰岩和黑色钙质泥岩为主, 主要的生物碎屑以腕足和介形虫为主.生物碎屑都非常破碎, 壳体大都平行层面, 颗粒之间发育大量压溶缝, 说明泥灰岩层经历过强烈的成岩压实作用.基于对灰岩-泥灰岩韵律层的生屑类型和成岩现象的分析, 提出差异成岩作用来解释该套地层的形成过程: 泥灰岩层中不稳定的文石在早期成岩过程中溶蚀, 然后迁移到灰岩层中形成方解石胶结灰岩层; 随后机械压实作用和化学压实作用主要发生在泥灰岩层中; 最终灰岩-泥灰岩层由于差异成岩作用导致其抗风化能力不同而形成不同的露头特征.其中文石溶蚀发生在海水埋藏环境, 有机质的分解为其提供了动力来源, 这与栖霞期较高的原始生产力相符合.   相似文献   

9.
The complex pattern of biological accretion, internal sedimentation, early lithification, and biological destruction, that characterizes modern reefs and many fossil reefs has been recognized in archaeocyathid-rich patch reefs of Lower Cambrian age in the Forteau Formation, southern Labrador. Patch reefs occur as isolated masses or complex associations of many discrete masses of archaeocyathid-rich limestone and skeletal lime sands, surrounded by well-bedded skeletal limestones and shales. Each reef is composed of many loafshaped mounds stacked on top of one another. The limestone of each mound comprises archaeocyathids and Renalcis or Renalcis-like structures in a matrix of argillaceous lime mud rich in sponge spicules, trilobite and salterellid skeletons. Numerous growth cavities roofed by pendant Renalcis-like organisms and Renalcis are partially to completely filled with geopetal sediment indicating that much of the matrix was deposited as internal sediment. Two stages of diagenetic alteration are recognized: (1) syn-depositional, which affected only the reefs, and (2) post-depositional, which affected both reefs and inter-reef sediments. On the sea floor reef sediments were pervasively cemented and fibrous carbonate was precipitated in intraskeletal and growth cavities. These limestones and cements as well as archaeocyathid skeletons, were subsequently bored by endolithic organisms. Later post-depositional subaerial diagenesis resulted first in dissolution of certain skeletons and precipitation of calcite cement above the water table, followed by extensive precipitation of pore-filling calcite below the water table. These carbonate reefs are similar in structure to the basal pioneer accumulations of much younger lower and middle Palaeozoic reefs. They did not develop into massive ‘ecologic’ reefs because archaeocyathids never developed the necessary large, massive, hemispherical skeletons. This occurrence indicates that reefs developed more or less coincident with, and not long after, the appearance of skeletal metazoans in the Lower Cambrian.  相似文献   

10.
The Upper Ordovician rocks of Hadeland, Norway, form a sequence of thin bedded nodular limestones (wackestones) and shales, hosting five distinctive sedimentary breccia complexes. These breccias contain blocks of varying sizes and shapes in a wackestone and grainstone matrix. Blocks differ in lithology, and in their included biotas and cement sequences. The thin bedded limestones are interpreted as turbidites, deposited against a background of hemipelagic calcareous shales. The breccias occupy channels cut into this sequence. The lithologies and biotas of blocks in the breccias record deposition in differing sedimentary environments, whereas their cements are the results of contrasting diagenetic histories. Blocks were eroded from a diverse and mature carbonate platform, close to sea level, which probably lay 5–10 km east of Hadeland. The breccias are interpreted as debris flow deposits, transported as channellized flows. Following channel cutting events, perhaps triggered by sea level change, channels were characterized by deposition rather than erosion. Wackestones and grainstones associated with the breccias also reflect resedimentation, their less diverse biota suggesting local derivation on the slope. The reworking of calcarenaceous muds locally produced clean washed calcarenites (now grainstones). A fall in sea level resulted in emergence of the upper slope and erosion of the debris flow complex to form caverns and fissures. As sea level rose again crinoidal calcarenites, now grainstones, were deposited within these cavities. Cement sequences in blocks record early marine and burial conditions on the shelf, and also precipitation of new marine cements following downslope transport. Those cements in lithologies formed in situ document later shallowing, culminating in emergence. The localized dissolution of cements in both blocks and associated grainstones reflects the infiltration of ‘aggressive’meteoric waters through permeable channel deposits. A subsequent rise in sea level is recorded in the generation of an additional marine cement with final burial reflected in the deposition of blocky calcite. The debris flow deposits therefore maintained their distinctive character from deposition through diagenesis.  相似文献   

11.
The controlling parameters of early marine carbonate cementation in shoal water and hemipelagic to pelagic domains are well‐studied. In contrast, the mechanisms driving the precipitation of early marine carbonate cements at deeper slope settings have received less attention, despite the fact that considerable volumes of early marine cement are present at recent and fossil carbonate slopes in water depths of several hundreds of metres. In order to better understand the controlling factors of pervasive early marine cementation at greater water depths, marine carbonate cements observed along time‐parallel platform to basin transects of two intact Pennsylvanian carbonate slopes are compared with those present in the slope deposits of the Permian Capitan Reef and Neogene Mururoa Atoll. In all four settings, significant amounts of marine cements occlude primary pore spaces downslope into thermoclinal water depths, i.e. in a bathymetric range between some tens and several hundreds of metres. Radial, radiaxial and fascicular optic fibrous calcites, and radiaxial prismatic calcites are associated with re‐deposited facies, boundstones and rudstones. Botryoidal (formerly) aragonitic precipitates are common in microbially induced limestones. From these case studies, it is tentatively concluded that sea water circulation in an extensive, near‐sea floor pore system is a first‐order control on carbonate ion supply and marine cementation. Coastal upwelling and internal or tidal currents are the most probable mechanisms driving pore water circulation at these depths. Carbonate cements precipitated under conditions of normal to elevated alkalinity, locally elevated nutrient levels and variable sea water temperatures. The implications of these findings and suggestions for future work are discussed.  相似文献   

12.
The precipitation of calcite and aragonite as encrustations directly on the seafloor was an important platform‐building process during deposition of the 2560–2520 Ma Campbellrand‐Malmani carbonate platform, South Africa. Aragonite fans and fibrous coatings are common in unrestricted, shallow subtidal to intertidal facies. They are also present in restricted facies, but are absent from deep subtidal facies. Decimetre‐thick fibrous calcite encrustations are present to abundant in all depositional environments except the deepest slope and basinal facies. The proportion of the rock composed of carbonate that precipitated as encrustations or in primary voids ranges from 0% to > 65% depending on the facies. Subtidal facies commonly contain 20–35%in situ precipitated carbonate, demonstrating that Neoarchaean sea water was supersaturated with respect to aragonite, carbonate crystal growth rates were rapid compared with sediment influx rates, and the dynamics of carbonate precipitation were different from those in younger carbonate platforms. The abundance of aragonite pseudomorphs suggests that sea‐water pH was neutral to alkaline, whereas the paucity of micrite suggests the presence of inhibitors to calcite and aragonite nucleation in the mixed zone of the oceans.  相似文献   

13.
The stable isotope geochemistry of Miocene sediments from the leeward margin of the Great Bahama Bank was examined to investigate burial diagenetic processes in periplatform carbonates. Data indicate that, in addition to differences in bulk proportions of neritic and pelagic carbonate along the slope, rhythmic variation in primary carbonate content has controlled patterns of burial diagenesis and associated geochemical signatures throughout much of the succession examined. The present study focuses on Ocean Drilling Program Sites 1006 and 1007, the most distal of five sites drilled from marginal to deep basin environments during Leg 166. These Miocene sections are characterized by their cyclic appearance, manifest as decimetre‐ to metre‐scale alternations between light‐coloured ooze/chalk/limestone and dark‐coloured marl/marlstone. The section at Site 1006 contains a high proportion of pelagic carbonate and is unlithified to a subbottom depth of ~675 m. Fluctuations in δ18O and δ13C values at this site are independent of lithological variation and reflect primary conditions. At Site 1007, located at the toe‐of‐slope and composed of a mixture of bank‐derived and pelagic carbonate, limestones are densely cemented, show little evidence of compaction and have δ18O values up to 2‰ higher than coeval sediments at Site 1006. Marlstones at Site 1007 are poorly cemented, exhibit an increase in compaction‐related features with depth and have lower and more variable δ18O values that are similar to those of coeval sediments at Site 1006. Isotopic and petrographic characteristics of limestone interbeds result from cement precipitation from cold sea water during the first ~100 m of burial. Higher proportions of insoluble materials and pelagic carbonate seem to have inhibited diagenetic alteration in adjacent marlstones; in spite of significant compaction and pressure solution during burial, original isotopic compositions appear to be best preserved in these intervals at Site 1007. The documented contrasts in petrographic and isotopic patterns illustrate the role of primary sediment composition in controlling lithification processes in periplatform carbonates and stress the importance of considering such factors when interpreting geochemical data from ancient shelf and slope limestones.  相似文献   

14.
Cementation of bryozoan-echinoid-benthic foraminiferal temperate shelf carbonates of the Oligocene Te Kuiti Group, North Island, New Zealand, occurred mainly during subsurface burial. The calcite cements in the limestones are dominated by equant and syntaxial rim spar which typically becomes ferroan (given an iron supply) and, compared to the skeletal material with normal marine δ18O values from +2 to −1‰, more depleted in 18O with depth of burial, the δ18O composition of bulk cement samples ranging from −1 to −7‰. These trends reflect the establishment in pore waters during sediment burial of reducing conditions and gradually increasing temperatures (20–50°C), respectively. The δ13C values (0 to +3‰) of the cements remain the same as the host marine shells, suggesting the source of carbon in the cements was simply redistributed marine carbonate derived from shell dissolution.

Two gradational burial diagenetic environments influenced by marine-derived porewaters are arbitrarily distinguished: shallow burial phase and moderate burial phase. During the shallow burial phase, down to 500–600 m sub-bottom depth, the carbonates lost at least 25% of their original porosity by mechanical compaction and were selectively cemented by non-ferroan or usually ferroan, variably luminescent, slightly 18O-depleted sparry calcite cement (δ18O −2 to −4‰), mainly as syntaxial rims about echinoid grains. These shallow-burial cements form less than about 10% of total cement in the majority of the limestones and their source was probably mainly mild intergranular dissolution of calcitic skeletal fragments accompanying the onset of chemical compaction. During the moderate burial phase, between about 600 and 1100 m sub-bottom depth, porosity loss continued (typically to about 70% of its original value) as a result of pressure-solution of calcitic bioclasts associated with more advanced stages of chemical compaction. This involved development of a wide variety of non-sutured and microstylolitic solution seams, including both single and composite, wispy or continuous, bedding-parallel types and non-parallel reticulate forms. The released carbonate was precipitated as ferroan (or non-ferroan where iron supply was negligible), dull luminescent, strongly 18O-depleted (δ18O −4 to −7‰), mainly equant calcite spar cement, occluding available pore space in the limestones.  相似文献   


15.
ABSTRACT
The carbon and oxygen isotopic composition of the Austin Chalk was examined in cores representing a range of depths from surface to 3000 m in order to document the effects of burial diagenesis on carbon and oxygen isotopic composition. Low magnesium calcite oysters were separated (from 500 um wide areas) and analysed to estimate the starting composition of Cretaceous marine sediment. These gave an average value of -2·5%δ18O; + 2·0%δ13C (PDB). The compositions of micrite, intergranular cement, and fracture cement were analysed, and their deviation from this original marine composition was evaluated to document the progression of chalk diagenesis. Interestingly, micrite exhibits only minor variation in composition from marine values despite present burial depth ranges in excess of 3000 m. The average deviation from δ18O marine is less than 1·5. Furthermore, intergranular cement and particularly fracture cements, which occur only in the deepest cores and which clearly post-date micrite lithification, are generally indistinguishable from micrite in composition. Isotopic compositions exhibit no correlation with depth of burial despite abundant petrographic evidence of deep burial diagenesis. This uniformity in composition is interpreted as reflecting a closed, rock-dominated diagenetic system in which the compositions of precipitated carbonate cements were controlled by the composition of dissolving carbonates during lithification. As such, the composition of burial cement is not representative of the rock-water temperatures during precipitation.
Thus, in the context of isotopic analyses from other carbonate systems, unless the degree of openness of the diagenetic system is known, oxygen isotopic signatures of cements cannot directly be converted to the rock-water temperatures at which they were precipitated unless the composition of the ambient porefluid is also known.  相似文献   

16.
西沙群岛现代海滩岩岩石学初见   总被引:3,自引:0,他引:3       下载免费PDF全文
引言我国美丽富饶的西沙群岛位于海南岛东南180海里南海西北部台阶式大陆坡的西沙台阶之上,由近40个岛洲礁滩组成。其中岛屿部分,除高尖石是由火山岩构成的以外,其余均为珊瑚礁岛屿。  相似文献   

17.
显生宙非骨屑碳酸盐矿物经历了文石海和方解石海的交替,主要造礁生物和沉积物生产者的骨骼矿物与非骨屑碳酸盐矿物具有同步变化的趋势。这种长期的变化趋势可以用海水化学Mg/Ca摩尔比的变化来解释。流体包裹体、同位素和微量元素等证据也证实了海水化学在地质历史中经历过剧烈的变化。虽然生物诱导矿化和生物控制矿化的相对重要性一直存在争议,但古生物地层记录和人工海水养殖实验结果都表明,海水化学演化对生物矿化有重要的影响,体现在造礁生物群落的兴衰、生物起源时对骨骼矿物类型的选择以及微生物碳酸盐岩在地质历史中的分布等。这些为研究前寒武纪海水化学演化、古气候和古环境的重建、同位素地层对比以及碳酸盐的沉积和成岩等问题提供了新的思路。  相似文献   

18.
Moulds after aragonite fossils from two Upper Ordovician limestones in the Oslo Region are filled with well sorted clastic fine sand. The fossil moulds are thought to have been formed by selective dissolution of aragonite shell material by fresh water in the vadose zone. Internal sedimentation post-dates precipitation of a thin veneer of iron poor drusy calcite cement, but predates precipitation of ferroan blocky calcite cement. These age relationships and the texture of the fine sand suggests sedimentation in semiconsolidated sediment in the vadose zone of an island during early emergence.  相似文献   

19.
Deposits of catastrophic rockslides composed of lithologies rich in carbonate minerals may undergo precipitation of cements that can be used to proxy-date the rockslide event and/or subsequent geomorphic changes of the rockslide mass.In the Alps, localized to widespread lithification of post-Glacial rockslide deposits is observed in lithologies ranging from limestones and dolostones to metacarbonates to calcphyllites. Lithification of rockslide deposits to breccias may be localized to meteoric ‘runoff-shadows’ below larger boulders, or may comprise a layer of breccia or may affect a rockslide mass down its base. In addition, precipitation of cements and small stalactites may take place in megapores on boulder undersides. Cements found in rockslide deposits comprise skalenohedral calcite, prismatic calcite, blocky calcite, calcitic micrite and micropeloidal calcitic cement and, rarely, botryoidal aragonite. Initial cement formation probably is driven by meteoric dissolution–re-precipitation of (mini-) micritic abrasive rock powder generated by dynamic disintegration during the rockslide event. Preliminary 234U/230Th ages of rockslide cements support a concept that cementation starts immediately or early after a rockslide event. In rockslide deposits of calcphyllite with accessory pyrite, oxidation of pyrite probably also propels the process of carbonate dissolution–re-precipitation. Limestone-precipitating springs emerging from rockslide masses, and well-cemented talus slopes and fluvial conglomerates percolated by rockslide-derived groundwaters, indicate that rockslide deposits remain diagenetically active long after emplacement.  相似文献   

20.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号