首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gondwana Research》2014,26(4):1445-1468
The continental crust of the North China Craton (NCC) is a major reservoir of mineral resources with imprints of secular changes in tectonics and metallogeny. The Jiaodong Peninsula, located in the eastern margin of the North China Craton (NCC), is currently one of the largest gold producers over the globe, and preserves the records of multiple magmatic and metamorphic events. Here we characterize the timing and tectonics of the major Mesozoic magmatism and the associated gold metallogeny in this region through a comprehensive U–Pb geochronological and Hf isotope investigation of zircons in a suite of granitoids, mafic magmatic enclaves, melanocratic dikes and melted basement rocks.The Linglong granite, hosting one of the major gold deposits in Jiaodong, shows emplacement ages between 150 and 160 Ma, and the dominantly negative εHf (t) values (− 34.0 to − 23.8) of zircons from this intrusion suggest magma derivation from recycled components in the Archean basement. The Guojialing granodiorite and its mafic magmatic enclaves show similar ages between 123 and 127 Ma, with negative εHf (t) values (− 19.3 to − 16.8), corresponding to crustal magma source. The melanocratic dikes, belonging to pre- and syn-mineralization stages, with U–Pb age range of 126 to 166 Ma display large variation in their zircon εHf (t) values (− 25.7 and 2.3) suggesting the involvement of both recycled crustal and juvenile mantle components. Zircons in the melted basement rocks with ages in the range of ca. 127–132 Ma also display both positive and negative εHf (t) values (− 44.6 and 9.8) indicating a mixture of recycled ancient crust and juvenile magmas. Our study shows that although the peak of gold metallogeny coincided with the tectonics associated with Pacific plate subduction which mobilized and concentrated the ores, the source materials of gold mineralization and magmatism had multiple origins including from the Precambrian basement rocks, Mesozoic granitoids and mantle-derived mafic magmas with extensive mixing of crustal, lithosphere mantle and asthenospheric components. A combination of delamination, mantle upwelling, subduction-related metasomatic enrichment and recycling of ancient components facilitated the gold metallogeny in this region. Our study provides a typical case of juvenile and recycled components in the formation and evolution of continental crust and associated mineral resources.  相似文献   

2.
Widespread Mesozoic Au and other hydrothermal polymetal (Zn–Pb–Cu–Mo–Ag–W–Fe–REE) deposits or smaller prospects occur in association with ancient mobile belts surrounding and cutting through the North China Carton (NCC). Among these, the gold ores of the Jiaodong Peninsula, Shandong Province, eastern NCC, represent the largest gold district in China. However, the genesis of these important gold mineralizations has remained controversial, notably their relationships to widespread mafic magmatism of alkaline affinity.The ore bodies of the Guocheng gold deposit on the Jiaodong Peninsula are fracture-controlled, sulfide-rich veins and disseminations, formed contemporaneously with abundant dolerite, lamprophyre and monzonite dikes at ca. 120 Ma. Dolerite dikes possess mantle-like major element compositions and alkaline affinity, associated with prominent subduction-type trace element enrichments. The dikes show petrographic and chemical evidence of magma mixing that triggered exsolution of magmatic sulfide and anhydrite crystallization, preserved as primary inclusions in phenocrysts. LA-ICP-MS analysis of magmatic sulfide inclusions demonstrates that metal abundance ratios (Ag, As, Au, Bi, Co, Cu, Mo, Ni, Pb, Sb, Zn) largely correspond to those of both unaltered bulk rock and bulk ore. Together with identical Pb isotope ratios of dolerite and bulk ore, this demonstrates that gold mineralization and dolerite dikes share a common source.Lead isotope signatures of the ore sulfides are much less radiogenic (17.08 < 206Pb/204Pb < 17.25, 15.41 <207Pb/204Pb < 15.45, 37.55 < 208Pb/204Pb < 37.93) relative to the Pb signature of Phanerozoic convecting mantle and plot to the left of the Geochron and above the MORB-source mantle Pb evolution line. Forward Monte Carlo simulations indicate three events for the U–Th–Pb isotope evolution: (1) late Archean formation of juvenile crust is followed by (2) subduction of this aged crust at ca. 1.85 Ga along with the assembly of Jiao–Liao–Ji mobile belt (suture within Columbia supercontinent). This late-Archean subducted crust released fluids with drastically reduced U/Pb that metasomatized the overlying depleted mantle, which formed cratonic lithospheric mantle. This metasomatized lithospheric mantle was (3) tapped in response to early Cretaceous extensional tectonics affecting notably the eastern margin of the NCC to generate mafic magmas and associated gold mineralization at Guocheng. Similarly non-radiogenic uranogenic Pb isotope data characterize the contemporaneous mafic dikes and gold deposits in the entire Jiaodong Peninsula, suggesting that our genetic model applies to the entire Jiaodong gold district.We propose that early Cretaceous melting of subcontinental lithospheric mantle metasomatized by subduction fluids during Paleoproterozoic amalgamation of terranes to the eastern NCC along with Columbia supercontinent assembly generated mafic magmatism and associated gold deposits. Given the conspicuous association of Phanerozoic hydrothermal ore deposits associated with reactivated Paleoproterozoic mobile belts, we envisage that our genetic model, which largely corresponds to that which is proposed for the Bingham porphyry-Cu–Au–Mo deposit, USA, may explain much of the magmatic-hydrothermal activity and associated ore formation all around the NCC.  相似文献   

3.
The North China Craton (NCC) provides a classic example for extensive destruction of the cratonic lithosphere. The Mesozoic magmatism which contributed to the decratonization of the NCC was also accompanied by the formation of a variety of mineral deposits. In order to gain further insights into the cratonic destruction process, typical iron and gold deposits are investigated here. Helium–argon isotopic data on pyrite, from typical skarn iron deposits of the Beiminghe and Fushan in the Han-Xing district of the central NCC, and the Linglong and Canzhuang gold deposits in the Jiaodong district in the eastern NCC, are presented in this paper. The 3He/4He, 40Ar/36Ar and 40Ar/4He ratios show generally uniform patterns within the individual deposits and reveal a complex evolutionary history of the ore-forming fluids with varying degree of crust–mantle interaction. The ore-forming fluids associated with the gold mineralization at the Jiaodong mine have higher content of fluids of mantle origin with mantle helium ranging from 1.24% to 18.02% (average 6.73%; N = 18). In contrast, the ore-forming fluids related to the iron ore deposits contain less mantle contribution with mantle helium ranging from 0.12% to 4.96% (average 1.29%; N = 10). Our results suggest complex and heterogeneous crust–mantle processes associated with the magmatism and metallogeny, where the lithosphere of the eastern NCC was subjected to more extensive thinning and destruction as compared with that in the western part, consistent with the observations from geophysical studies in the region. Our study demonstrates that fluids associated with the Mesozoic metallogenic processes in the NCC provide useful insights into the geodynamics of destruction and refertilization of the cratonic lithosphere.  相似文献   

4.
The large scale Mesozoic magmatism and related metallogeny in the Taihang Mountains (TM) provide important clues for the lithospheric thinning of the North China Craton (NCC). Among the ore deposits, the vein gold mineralization of Shihu in the Fuping region and the skarn ore deposit of Xishimen in the Wu'an region represent typical Mesozoic metallogeny in the TM. In the Shihu gold mine, the Mapeng batholith is dominantly composed of monzogranite and granodiorite, whereas, the Wu'an pluton in the Xishimen iron mine mainly comprises monzonite and diorite. Here we present zircon LA–ICP-MS U–Pb data from 8 samples which reveal the timing of magmatism in the TM as ca. 130 Ma, which is contemporaneous with the large-scale metallogeny in the margins of the NCC. The δ34S values recorded in the sulfide minerals from the Shihu gold deposit and the Xishimen skarn iron deposit show a range of 2.2‰–5.0‰, and 11.6‰–18.7‰, respectively. Helium isotopic compositions of fluid inclusions in pyrite from the Shihu gold deposit vary from 0.12 to 1.98 Ra (where Ra is the 3He/4He ratio of air = 1.39 × 10? 6), with calculated mantle helium values of 1.4%–25%, whereas, those of the Xishimen skarn iron deposit range from 0.06 to 0.19 Ra, with calculated mantle helium of 0.7%–2.2%. The S–He–Ar isotopic data suggest a lower crustal origin for the ore-forming components, with variable inputs of mantle source. The large population of inherited zircons in our samples, with 207Pb/206Pb ages ranging between 2500 Ma and 1800 Ma, also supports crustal participation. Our data reveal that the Shihu gold deposit witnessed greater mantle input than the Xishimen skarn iron deposit, suggesting that the continental lithosphere is markedly thinner under the Fuping region than that under the Wu'an region. Our interpretation is also supported by published data from two ultra-broadband high-precision magnetotelluric sounding profiles across the TM region showing a variation in the lithosphere thickness from 155 km to 70 km while moving from the south (Wu'an region) to the north (Fuping region). Our study suggests that inhomogeneous lithospheric thinning in the central NCC occurred at least as early as ca. 130 Ma ago.  相似文献   

5.
The Jiehe gold deposit, containing a confirmed gold reserve of 34 tonnes (t), is a Jiaojia-type (disseminated/stockwork-style) gold deposit in Jiaodong Peninsula. Orebodies are hosted in the contact zone between the Jurassic Moshan biotite granite and the Cretaceous Shangzhuang porphyritic granodiorite, and are structurally controlled by the NNE- to NE-striking Wangershan-Hedong Fault. Sulphide minerals are composed predominantly of pyrite with lesser amounts of chalcopyrite, galena, and sphalerite. Hydrothermal alteration is strictly controlled by fracture zones, in which disseminated sulfides and native gold are spatially associated with pervasive sericitic alteration. Mineralogical, textural, and field relationships indicate four stages of alteration and mineralization, including pyrite-bearing milky and massive quartz (stage 1), light-gray granular quartz–pyrite (stage 2), quartz–polysulfide (stage 3) and quartz–carbonate (stage 4) stages. Economic gold is precipitated in stages 2 and 3.The Jiehe deposit was previously considered to form during the Eocene (46.5 ± 2.3 Ma), based on Rb-Sr dating of sericite. However, 40Ar/39Ar dating of sericite in this study yields well-defined, reproducible plateau ages between 118.8 ± 0.7 Ma and 120.7 ± 0.8 Ma. These 40Ar/39Ar ages are consistent with geochronological data from other gold deposits in the region, indicating that all gold deposits in Jiaodong formed in a short-term period around 120 Ma. The giant gold mineralization event has a tight relationship with the extensional tectonic regime, and is a shallow crustal metallogenic response of paleo-Pacific slab subduction and lithospheric destruction in the eastern NCC.  相似文献   

6.
The Beiya gold–polymetallic deposit, located in the middle of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt, is one of the largest gold deposits in China. The mineralization mainly occurs in skarn along the intrusive contacts between the alkaline porphyries and Middle Triassic limestone. In this paper, we present U–Pb age as well as major and trace element geochemistry of titanite from the Beiya deposit, and distinguish the titanite into a magmatic- and a hydrothermal suite. Our study indicates that the titanite from the ore-related porphyry and from the mineralized skarn is texturally and geochemically very different. The euhedral, envelope-shaped titanite from the ore-related porphyry has lower FeO, F, HFSEs, Nb/Ta and Lu/Hf, together with higher TiO2 and Th/U than the subhedral titanite from the mineralized skarn. The titanite from the porphyry also displays higher LREE/HREE and more subtle negative Eu anomaly than its mineralized skarn counterpart. This suggests a magmatic- and a hydrothermal origin for, respectively, the titanite from the ore-related porphyry and from the mineralized skarn. In-situ magmatic titanite U–Pb dating has yielded an Eocene age of 36.0 ± 5.9 Ma, consistent with the porphyry zircon U–Pb age (36.07 ± 0.43 Ma) obtained in previous studies. Hydrothermal titanite has yielded a weighted average 206Pb/238U age of 33.1 ± 1.0 Ma (MSWD = 2.0), which represents the age of the retrograde skarn alteration and the maximum age for the gold mineralization. Together with the previous molybdenite Re–Os age, we have further constrained the Beiya gold–polymetallic metallogeny to 33.1–34.1 Ma. The mineralization age is slightly younger than the porphyry emplacement, indicating that the Beiya metallogeny was likely to be a post-magmatic hydrothermal product of the Himalayan orogenic event. The REE characteristics of hydrothermal titanite also reveal that the ore forming fluids may have been derived from a highly oxidized magma.  相似文献   

7.
《Gondwana Research》2014,25(1):48-102
The Asian continent formed during the past 800 m.y. during late Neoproterozoic through Jurassic closure of the Tethyan ocean basins, followed by late Mesozoic circum-Pacific and Cenozoic Himalayan orogenies. The oldest gold deposits in Asia reflect accretionary events along the margins of the Siberia, Kazakhstan, North China, Tarim–Karakum, South China, and Indochina Precambrian blocks while they were isolated within the Paleotethys and surrounding Panthalassa Oceans. Orogenic gold deposits are associated with large-scale, terrane-bounding fault systems and broad areas of deformation that existed along many of the active margins of the Precambrian blocks. Deposits typically formed during regional transpressional to transtensional events immediately after to as much as 100 m.y. subsequent to the onset of accretion or collision. Major orogenic gold provinces associated with this growth of the Asian continental mass include: (1) the ca. 750 Ma Yenisei Ridge, ca. 500 Ma East Sayan, and ca. 450–350 Ma Patom provinces along the southern margins of the Siberia craton; (2) the 450 Ma Charsk belt of north-central Kazakhstan; (3) the 310–280 Ma Kalba belt of NE Kazakhstan, extending into adjacent NW Xinjiang, along the Siberia–Kazakhstan suture; (4) the ca. 300–280 Ma deposits within the Central Asian southern and middle Tien Shan (e.g., Kumtor, Zarmitan, Muruntau), marking the closure of the Turkestan Ocean between Kazakhstan and the Tarim–Karakum block; (5) the ca. 190–125 Ma Transbaikal deposits along the site of Permian to Late Jurassic diachronous closure of the Mongol–Okhotsk Ocean between Siberia and Mongolia/North China; (6) the probable Late Silurian–Early Devonian Jiagnan belt formed along the margin of Gondwana at the site of collision between the Yangtze and Cathaysia blocks; (7) Triassic deposits of the Paleozoic Qilian Shan and West Qinling orogens along the SW margin of the North China block developed during collision of South China; and (8) Jurassic(?) ores on the margins of the Subumusu block in Myanmar and Malaysia. Circum-Pacific tectonism led to major orogenic gold province formation along the length of the eastern side of Asia between ca. 135 and 120 Ma, although such deposits are slightly older in South Korea and slightly younger in the Amur region of the Russian Southeast. Deformation related to collision of the Kolyma–Omolon microcontinent with the Pacific margin of the Siberia craton led to formation of 136–125 Ma ores of the Yana–Kolyma belt (Natalka, Sarylakh) and 125–119 Ma ores of the South Verkhoyansk synclinorium (Nezhdaninskoe). Giant ca. 125 Ma gold provinces developed in the Late Archean uplifted basement of the decratonized North China block, within its NE edge and into adjacent North Korea, in the Jiaodong Peninsula, and in the Qinling Mountains. The oldest gold-bearing magmatic–hydrothermal deposits of Asia include the ca. 485 Ma Duobaoshan porphyry within a part of the Tuva–Mongol arc, ca. 355 Ma low-sulfidation epithermal deposits (Kubaka) of the Omolon terrane accreted to eastern Russia, and porphyries (Bozshakol, Taldy Bulak) within Ordovican to Early Devonian oceanic arcs formed off the Kazakhstan microcontinent. The Late Devonian to Carboniferous was marked by widespread gold-rich porphyry development along the margins of the closing Ob–Zaisan, Junggar–Balkhash, and Turkestan basins (Amalyk, Oyu Tolgoi); most were formed in continental arcs, although the giant Oyu Tolgoi porphyry was part of a near-shore oceanic arc. Permian subduction-related deformation along the east side of the Indochina block led to ca. 300 Ma gold-bearing skarn and disseminated gold ore formation in the Truong Son fold belt of Laos, and along the west side to ca. 250 Ma gold-bearing skarns and epithermal deposits in the Loei fold belt of Laos and Thailand. In the Mesozoic Transbaikal region, extension along the basin margins subsequent to Mongol–Okhotsk closure was associated with ca. 150–125 Ma formation of important auriferous epithermal (Balei), skarn (Bystray), and porphyry (Kultuminskoe) deposits. In northeastern Russia, Early Cretaceous Pacific margin subduction and Late Cretaceous extension were associated with epithermal gold-deposit formation in the Uda–Murgal (Julietta) and Okhotsk–Chukotka (Dukat, Kupol) volcanic belts, respectively. In southeastern Russia, latest Cretaceous to Oligocene extension correlates with other low-sulfidation epithermal ores that formed in the East Sikhote–Alin volcanic belt. Other extensional events, likely related to changing plate dynamics along the Pacific margin of Asia, relate to epithermal–skarn–porphyry districts that formed at ca. 125–85 Ma in northeastmost China and ca. 105–90 Ma in the Coast Volcanic belt of SE China. The onset of strike slip along a part of the southeastern Pacific margin appears to correlate with the giant 148–135 Ma gold-rich porphyry–skarn province of the lower and middle Yangtze River. It is still controversial as to whether true Carlin-like gold deposits exist in Asia. Those deposits that most closely resemble the Nevada (USA) ores are those in the Permo-Triassic Youjiang basin of SW China and NE Vietnam, and are probably Late Triassic in age, although this is not certain. Other Carlin-like deposits have been suggested to exist in the Sepon basin of Laos and in the Mongol–Okhotsk region (Kuranakh) of Transbaikal.  相似文献   

8.
The recently discovered Longtougang skarn and hydrothermal vein Cu–Zn deposit is located in the North Wuyi area, southeastern China. The intrusions in the ore district comprise several small porphyritic biotite monzonite, porphyritic monzonite, and porphyritic granite plutons and dikes. The mineralization is zoned from a lower zone of Cu-rich veins and Cu–Zn skarns to an upper zone of banded Zn–Pb mineralization in massive epidote altered rocks. The deposit is associated with skarn, potassic, epidote, greisen, siliceous, and carbonate alteration. Molybdenite from the Cu-rich veins yielded a Re–Os isochron age of 153.6 ± 3.9 Ma, which is consistent with U–Pb zircon ages of 154.0 ± 1.3 Ma for porphyritic monzonite, 154.0 ± 0.8 Ma for porphyritic biotite monzonite, and 152.0 ± 0.8 Ma for porphyritic granite. Geological observations suggest that the Cu mineralization is genetically related to the porphyritic biotite monzonite and porphyritic monzonite. All the zircons from intrusive rocks in the ore district are characterized by εHf(t) values between − 13.41 and − 4.38 and Hf model ages (TDM2) between 2054 and 1482 Ma, reflecting magmas derived mainly from a Proterozoic crustal source. Molybdenite grains from the deposit have Re values of 14.6–27.7 ppm, indicative of a mixed mantle–crust source. The porphyry–skarn abundant Cu and hydrothermal vein type Pb–Zn–Ag deposits in the North Wuyi area are related to the Late Jurassic porphyritic granites and Early Cretaceous volcanism, respectively. The Late Jurassic mineralization-related granites were derived from the crustal anatexis with some mantle input, which was triggered by asthenospheric upwelling induced by slab tearing during oblique subduction of the paleo-Pacific plate beneath the South China block, and the Early Cretaceous mineralization-related granitoids mainly from crust material formed within a series of NNE-trending basins during margin-parallel movement of the plate.  相似文献   

9.
《Gondwana Research》2014,25(3-4):1172-1202
The Shandong Province along the southeastern margin of the North China Craton is the largest gold producing region in China. The nature and extent of gold metallogeny between the Western Shandong (Luxi) and Eastern Shandong (Jiaodong) sectors display marked contrast. In this paper, we synthesize the information on mineralization and magmatism, S–Pb–H–O–C–He–Ar isotopic data of the ores and Sr–Nd–Pb–Hf isotopic data of the Mesozoic plutons from the Shandong region. Combined with the salient regional geophysical data, we discuss the geodynamic setting of the gold mineralization in Shandong. The age data converge to indicate that the peak of gold metallogeny in this region occurred at ca. 120 ± 10 Ma. The mineralization in Luxi area shows links with sources in the Tongjing and Yinan complexes. The ore-forming materials in the Jiaodong area were derived from multiple sources and show clear evidence for crust–mantle mixing. The Moho depth on both sides of the Tan–Lu fault is broadly similar with only a minor variation across the Tan–Lu fault. The LAB (lithosphere–asthenosphere boundary) in the Jiaodong region is shallower than that in the Luxi area. The Tan–Lu fault is identified as a major corridor for asthenosphere upwelling. Geochemical features show that the mantle beneath the Luxi area is mainly of EM1 type, whereas the mantle in the eastern part, close to the Tan–Lu fault shows mixed EM1 and EM2 features. In contrast, the mantle beneath the Jiaodong area is mainly of EM2 type, suggesting the existence of more ancient lithospheric mantle beneath the Luxi area, in comparison to the extensively modified lithospheric mantle and asthenosphere beneath the Jiaodong area. The gold metallogeny in Shandong Province occurred in the geodynamic setting of lithospheric thinning. The differences in the character and intensity of gold mineralization between the Western and Eastern Shandong regions might be a reflection of the contrasting tectonic histories. The Western Shandong region preserves imprints of destruction through the Yangtze plate collision which probably marks the prelude for gold metallogeny in Jiaodong area. Subsequent magmatic input and cratonic destruction through Pacific plate subduction provided the settings for the later widespread mineralization in multiple phases.  相似文献   

10.
The Triassic West Qinling orogen, which formed by the continental collision between the South China block and North China craton following the subduction and closure of the paleo-Tethyan ocean, hosts numerous gold deposits that have commonly considered as products of metamorphic dehydration during the oceanic subduction and subsequent continental collision. However, whether or not there are gold deposits that are genetically related to regional magmatism remains poorly understood. Here we present mineralogical, compositional, and geochronological data of the Dewulu Au-Cu skarn deposit in the Xiahe-Hezuo district to understand the ore genesis and its genetic link to many coeval sediment-hosted disseminated and magmatic-hosted vein gold deposits in the same district, which collectively reveal a possible intrusion-related gold system. The Dewulu Au-Cu skarn deposit in the eastern zone of the Xiahe-Hezuo district is associated with the early Triassic I-type, ilmenite-series Dewulu quartz diorite pluton that intrudes Permian marine clastic and carbonate rocks. Ore-related hydrothermal biotite separates yield a well-defined 40Ar/39Ar plateau age of 239.9 ± 1.4 Ma (2σ), which agrees with a previous zircon U-Pb age (238.6 ± 1.5 Ma at 2σ) of the Dewulu quartz diorite and thus demonstrates a temporal and likely genetic link between the two. Both prograde and retrograde skarn assemblages are well developed in the Dewulu Au-Cu deposit. Prograde garnet and pyroxene are compositionally dominated by grossularite and hedenbergite, respectively, indicating a reduced skarn system. Au-Cu mineralization is largely represented by the arsenopyrite-loellingite-chalcopyrite-pyrrhotite-bornite assemblage and is associated with retrograde skarns. Gold is mostly hosted in arsenopyrite, loellingite and chalcopyrite, and has close textural relations with native bismuth or bismuthides. Mineral stability relationships and fluid inclusion microthermometric data confirm that the prograde skarns formed at a low oxygen fugacity, high temperature (> 630 °C), and a depth range of 2.9 to 6.5 km. Arsenopyrite and chlorite geothermometers indicate that the retrograde skarns and late quartz-sulfide-calcite assemblages formed at 550 to 345 °C and < 350 °C, respectively. The oxygen and sulfur fugacities of ore fluids were below the pyrite-pyrrhotite buffer during the retrograde stage, confirming a reduced fluid system. The reduced nature of ore-forming fluids is inherited from the reduced Dewulu quartz diorite, which was likely caused by significant assimilation of Permian to early Paleozoic carbonaceous and pyritic sedimentary sequences into the parental magmas that originally had a high oxidation state. The Xiahe-Hezuo district also hosts several major sediment-hosted disseminated and magmatic-hosted vein gold deposits, which are broadly coeval with the Dewulu Au-Cu skarn deposit. All those disseminated and vein gold deposits have also been recognized to be genetically related to reduced granitoid intrusions in the Xiahe-Hezuo district. These deposits combined constitute the first intrusion-related gold system in the West Qinling orogen.  相似文献   

11.
Xincheng is a world-class orogenic-gold deposit hosted by the Early Cretaceous Guojialing granitoid in the Jiaodong Peninsula, eastern China. A zircon U–Pb age of 126 ± 1.4 Ma, together with previous data, constrain the emplacement of the Guojialing intrusion to 132–123 Ma. The granitoid underwent subsolidus ductile deformation at >500 °C following its intrusion. The small difference in age between the youngest zircon U–Pb age of unaltered granitoid (~123 Ma) and the ca. 120 Ma 40Ar/39Ar ages of sericite, associated with breccias and gold mineralization within it indicate initial rapid cooling from magmatic temperatures to those prevalent during brittle deformation and associated gold mineralization at ~220–300 °C. Evidence of a direct association between granitic magmatism and gold mineralization, such as at least localized near-magmatic depositional temperatures and metal zoning evident in undoubted intrusion-related gold deposits, is absent. The 40Ar/39Ar age of ~120 Ma coincides with the mineralization age of many other orogenic-gold deposits along the Jiaojia Fault. Sixteen zircon fission-track (ZFT) ages across the ore and alteration zones range from 112.9 ± 3.4 to 99.1 ± 2.7 Ma. The long period of cooling to the ~100 Ma ZFT closure temperatures recorded here suggests that ambient temperatures for hydrothermal alteration systems lasted to ~100 Ma, possibly because of their focus at Xincheng within the young Guojialing granitoid as it cooled more slowly below approximately 300 °C to 220 °C. However, the restricted number of auriferous ore stages, combined with the presence of cross-cutting gold-free quartz-carbonate veins, indicate that gold itself was only deposited over a restricted time interval at ~120 Ma, consistent with studies of orogenic gold deposits elsewhere. This highlights the complex interplay between magmatism, deformation and the longevity of hydrothermal systems that cause genetic controversies. Based on apatite fission-track (AFT) ages, the Xincheng gold deposit was then uplifted and exhumed to near the surface of the crust at 15 Ma, probably due to movement on the crustal-scale Tan-Lu Fault. Recognition of such exhumation histories along gold belts has conceptual exploration significance in terms of the probability of discovery of additional exposed or sub-surface gold ore bodies as discovery is as much a function of preservation as formation of the deposits.  相似文献   

12.
The Dong’an gold deposit is a large-sized epithermal gold deposit recently discovered in the Lesser Khingan Range, NE China. Here, we present a detailed study of the petrogenesis, magma source, and tectonic setting of a medium–coarse grained alkali-feldspar granite, the major host rock of the Dong’an gold deposit. The LA–ICP–MS zircon U–Pb dating of the medium–coarse grained alkali-feldspar granite yields an early Jurassic age of 176.3 ± 1.1 Ma (MSWD = 0.62). The whole-rock geochemical data indicate that the samples are felsic, ferroan, alkali-calcic and peraluminous with relatively high alkali (K2O + Na2O) content. They are enriched in LREEs and LILEs (e.g., Rb, Ba, K), but are depleted in HFSEs (e.g., Nb, Ta, P, Ti), especially in P and Ti, showing characteristics of volcanic arc magmas and similarities with the Early–Middle Jurassic granitic rocks in Xing’an Mongolian orogenic belt. Meanwhile, the negative Eu, Nb, Ta, Ti, and P anomalies are consistent with fractional crystallization of plagioclase, Ti-bearing phases (rutile, ilmenite, titanite, etc.) and apatite during magma evolution. The samples have low Nb/Ta ratios (8.65–14.91) and low Mg# values (18–36), which are indicative of crustal derived magmas and no interaction between source magmas and the mantle. In-situ Hf isotopic analyses of the zircons from the medium–coarse grained alkali-feldspar granite yield εHf(t) values of +3.38–+5.68 and two-stage model ages (TDM2) of 772–900 Ma, indicating the magmas formed this intrusion were generated by partial melting of Neoproterozoic basaltic materials in the young lower crust, and the magma source could be derived from a depleted mantle. The medium–coarse grained alkali-feldspar granite most likely formed in the late stage of Toarcian subduction of the Pacific plate, which can be identified on the tectonic setting discrimination diagrams, and the formation of this intrusion was associated with underplating of mantle-derived magmas, which provided heat for crustal partial melting. Similar to the medium–coarse grained alkali-feldspar granite, large amounts of granitic rocks and a series of nonferrous metal hydrothermal deposits (Mo, Cu, Au) formed in northeast China as results of magmatic activities triggered by subduction of the Pacific plate during the Early–Middle Jurassic.  相似文献   

13.
A central target in Earth sciences is to understand the processes controlling the stabilization and destruction of Archean continents. The North China craton (NCC) has in part lost its dense crustal root after the Mesozoic, and thus it is a key region to test models of crust–mantle differentiation and subsequent evolution of the continental crust. However, the timing and mechanisms responsible for its crustal thickening and reworking have been long debated. Here we report the Early Cretaceous Yinan (eastern NCC) adakitic granites, for which major/trace elemental models demonstrate that they are complementary to the analogy of the documented eclogitic relicts within the NCC. Based on their Late Archean inherited zircons, depleted mantle Nd model ages of ∼2.8 Ga, large negative εNd(t) values (−36.7 to −25.3) and strongly radiogenic initial 87Sr/86Sr ratios (0.7178–0.7264), we suggest that the Yinan adakitic granites were potentially formed by the dehydration melting of a thickened Archean mica-bearing mafic lower crust during the Early Cretaceous (ca. 124 Ma), corresponding to a major period (117–132 Ma) of the NCC Mesozoic intrusive magmatism. Combined previous results, it is shown that the thickening and reworking of the North China Archean lower crust occurred largely as two short-lived episodes at 155–180 Ma and 117–132 Ma, rather than a gradual, secular event. These correlated temporally with the superfast-spreading Pacific plate during the Mesozoic. The synchroneity of these events suggests rapid plate motion of the Pacific plate driving the episodic NCC crustal thickening and reworking, resulting in dense eclogitic residues that became gravitationally unstable. The onset of lithospheric delamination occurred when upwelling asthenosphere heated the base of lower crust to form coeval felsic magmas with or without involvement of juvenile mantle material. Collectively, the circum-Pacific massive crustal production could be attributed to the unusually rapid motion of Pacific at 155–180 Ma and 117–132 Ma.  相似文献   

14.
We performed zircon U–Pb dating and analyses of major and trace elements, and Sr–Nd–Pb isotopes for granitoids in the Bengbu area, central China, with the aim of constraining the magma sources and tectonic evolution of the eastern North China Craton (NCC). The analyzed zircons show typical fine-scale oscillatory zoning, indicating a magmatic origin. Zircon U–Pb dating reveals granitoids of two ages: Late Jurassic and Early Cretaceous (206Pb/238U ages of 160 Ma and 130–110 Ma, respectively). The Late Jurassic rocks (Jingshan intrusion) consist of biotite-syenogranite, whereas the Early Cretaceous rocks (Huaiguang, Xilushan, Nushan, and Caoshan intrusions) are granodiorite, syenogranite, and monzogranite. The Late Jurassic biotite-syenogranites and Early Cretaceous granitoids have the following common geochemical characteristics: SiO2 = 70.35–74.56 wt.%, K2O/Na2O = 0.66–1.27 (mainly < 1.0), and A/CNK = 0.96–1.06, similar to I-type granite. The examined rocks are characterized by enrichment in light rare earth elements, large ion lithophile elements, and U; depletion in heavy rare earth elements, Nb, and Ta; and high initial 87Sr/86Sr ratios (0.7081–0.7110) and low εNd (t) values (? 14.40 to ? 22.77), indicating a crustal origin.The occurrence of Neoproterozoic magmatic zircons (850 Ma) and inherited early Mesozoic (208–228 Ma) metamorphic zircons within the Late Jurassic biotite-syenogranites, together with the occurrence of Neoproterozoic magmatic zircons (657 and 759 Ma) and inherited early Mesozoic (206–231 Ma) metamorphic zircons within the Early Cretaceous Nushan and Xilushan granitoids, suggests that the primary magmas were derived from partial melting of the Yangtze Craton (YC) basement. In contrast, the occurrence of Paleoproterozoic and Paleoarchean inherited zircons within the Huaiguang granitoids indicates that their primary magmas mainly originated from partial melting of the NCC basement. The occurrence of YC basement within the lower continental crust of the eastern NCC indicates that the YC was subducted to the northwest beneath the NCC, along the Tan-Lu fault zone, during the early Mesozoic.  相似文献   

15.
The Ciemas gold mining area is located in the Sunda arc volcanic rock belt, West Java, Indonesia. Ore bodies are associated with Miocene andesite, dacite and quartz diorite porphyrite. To constrain ore genesis and mineralization significance, a detailed study was recently conducted examining these deposits, which included detailed field observation, petrographic study, petrochemistry, sulfur isotope analyses, zircon U–Pb dating, and fluid inclusion analysis. The results include the following findings. 1) Ore types have been identified as porphyry, a quartz–sulfide vein, and structure-controlled alteration rocks. 2) In host rocks, zircon LA–ICP-MS U–Pb dating of quartz diorite porphyrite, amphibole tuff breccia and andesite yield ages of 17.1 ± 0.4 Ma, 17.1 ± 0.4 Ma and 17.5 ± 0.3 Ma, respectively. 3) Fluid inclusions in the quartz from ore are given priority to liquid and gas–liquid phases, and their components are of the NaCl–H2O system with homogenization temperatures of 240–320 °C, salinities of 14–17%, densities of 0.85–0.95 g/cm3, and fluid pressure values between 4.1 and 46.8 MPa, corresponding to metallogenic depths from 150 to 1730 m. Fluid characteristics are identified as similar to those of high sulfur epithermal deposits. 4) The sulfur isotopic compositions are notably uniform, the δ34S values of wall rocks range from 3.71 to 3.85‰, and the δ34S values of ores vary from 4.90‰ to 6.55‰. The sulfur isotopic composition of ores is similar to that of the wall rocks, indicating a mixed origin of mantle with a sedimentary basement. 5) The trace element patterns of different ore types are similar, which indicates that they originate from the same source. Au deposits primarily occurred during the late magmatic activity. Finally, we have set up the regional metallogenic model, confirming that this gold deposit in the Sunda arc volcanic rock belt belongs to a metallogenic system from porphyry to epithermal type.  相似文献   

16.
The Song Hien rift basin is an important metallogenic area in NE Vietnam. This domain consists mainly of Triassic sulfide-rich black shale beds, which play a role as a sedimentary host for various mineral systems such as antimony, mercury and gold-sulfide deposits. Most of gold deposits are hosted in carbonaceous sedimentary rocks, however some deposits, which have similar characteristics, are hosted in fine-grained mafic magmatic rocks. An Ar-Ar isotopic dating of hydrothermal sericite from the sedimentary hosted Bo Va and Khung Khoang gold deposits and intrusion hosted orogenic Hat Han gold deposit yields plateau ages of 184.8 ± 2.1 Ma, 211.63 ± 2.3 Ma, and 209.12 ± 2.3 Ma, respectively. The obtained Ar-Ar ages convincingly show that the orogenic gold deposits in the Song Hien domain were formed in Late Triassic to Early Jurassic, while the age of the Bo Va deposit is at least older than 184.8 ± 2.1 Ma. Loss of argon by volume diffusion, supported by previously reported mineralogical and isotopic features of the Bo Va deposit may suggest that the Jurassic-Cretaceous (Yanshanian) tectonothermal events overprinted some deposits in the Song Hien domain. Formation of gold deposits in the Song Hien domain is linked to the same tectonic event as the Carlin-like gold deposits in SW China and is associated with an extensional tectonic regime that followed continental collision between the Indochina and South China Blocks. The similarity in geology setting and mineral composition of gold deposits of the Song Hien domain and the Golden Triangle region, as well as timing and kinematics of deformation, magmatic features, and stratigraphic sequence and bulk architecture, lead to conclusion that NE Vietnam and SW China is a single metallogenic zone. The study of gold deposits in Vietnam will provide a new data on the metallogenic history of this important part of SE Asia.  相似文献   

17.
The Yunnan–Guizhou–Guangxi “golden triangle” is considered to be one of the regions hosting Carlin-like gold deposits in China. Gold deposits in this region can be grouped into lode type that are controlled by faults and layer-like type controlled by stratigraphy. Arsenopyrite is one of the major gold-bearing minerals in these deposits. Rhenium–Os isotopic dating of arsenopyrite from the lode type Lannigou and Jinya and the layer-like type Shuiyindong gold deposits yields isochron ages of 204 ± 19 Ma, 206 ± 22 Ma, and 235 ± 33 Ma, respectively. The data suggest that the Carlin-like gold deposits formed in Late Triassic to Early Jurassic, which is clearly earlier than the ca. 100–80 Ma acid to ultra-basic magmatism in this part of southwestern China. The ages are consistent with ore formation during a period of post-collisional lateral transpression, which is similar to that of the Carlin-like gold deposits in western Qinling of China, but quite different from Carlin-type gold deposits in Nevada, U.S.A.  相似文献   

18.
The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids – the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U–Pb geochronology and REE data, and Lu–Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U–Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite–trondhjemite–granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean–Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly reworked basement rocks. Our study provides a window to intraplate magmatism triggered by mantle upwelling beneath a paleosuture in the North China Craton.  相似文献   

19.
This is a brief research report about the recently-discovered and currently being explored Dahutang tungsten deposit (or ore field) in northwestern Jiangxi, south-central China. The deposit is located south of the Middle–Lower Yangtze River valley Cu–Au–Mo–Fe porphyry–skarn belt (YRB). The mineralization is genetically associated with Cretaceous porphyritic biotite granite and fine-grained biotite granite and is mainly hosted within a Neoproterozoic biotite granodiorite batholith. The Dahutang ore field comprises veinlets-disseminated (~ 95% of the total reserve), breccia (~ 4%) and wolframite–scheelite quartz vein (~ 1%) ore styles. The mineralization and alteration are close to the pegmatite shell between the Cretaceous porphyritic biotite granite and Neoproterozoic biotite granodiorite and the three styles of ore bodies mentioned above are related to zoned hydrothermal alteration that includes greisenization, K-feldspar alteration, silicification, carbonatization, chloritization and fluoritization arranged in time (early to late) and space (bottom to top).Five samples of molybdenite from the three types of ores have been collected for Re/Os dating. The results show Re/Os model ages ranging from 138.4 Ma to 143.8 Ma, with an isochron age of 139.18 ± 0.97 Ma (MSWD = 2.9). The quite low Re content in molybdenite falls between 0.5 ppm and 7.8 ppm that is indicative of the upper crustal source. This is quite different from molybdenites in the YRB Cu–Au–Mo–Fe porphyry–skarn deposits that contain between 53 ppm and 1169 ppm Re, indicating a mantle source.The Dahutang tungsten system is sub-parallel with the YRB porphyry–skarn Cu–Au–Mo–Fe system. Both are situated in the north margin of the Yangtze Craton and have a close spatial–temporal relationship. This possibly indicates a comparable tectonic setting but different metal sources. Both systems are related to subduction of the Paleo-Pacific plate beneath the Eurasian continent in Early Cretaceous. The Cu–Au–Mo–Fe porphyry–skarn ores are believed genetically related to granitoids derived from the subducting slab, whereas the porphyry W deposits are associated with S-type granitoids produced by remelting of the upper crust by heat from upwelling asthenoshere.  相似文献   

20.
Late Mesozoic volcanism is widespread throughout NE China. On the basis of lithological associations and spatial relationships, the volcanic rocks in the Lesser Hinggan Range can be divided into two formations, i.e., felsic-dominant Fuminghe Formation and overlying mafic-dominant Ganhe Formation. The Dong'an gold deposit, a typical adularia–sericite epithermal system, is spatially closely associated with rhyolitic porphyry, which is a subvolcanic intrusion of the Fuminghe Formation. Total measured, indicated, and inferred resources for the Dong'an deposit are 70 tonnes (2.25 Moz) of gold with the grade of 5.04 g/t Au, making it one of the largest epithermal gold deposits in China.SHRIMP U–Pb zircon and 40Ar/39Ar geochronology applied to one rhyolitic porphyry sample and sericite separated from auriferous quartz veins of the main mineralization stage were carried out to constrain magmatic and hydrothermal events. The results suggest that the mineralization age of 107.2 ± 0.6 Ma overlaps with the age of the rhyolitic porphyry 108.1 ± 2.4 Ma. Our new age data indicate that there was a previously unrecognized mineralization event in NE China at 107–108 Ma.Systematic geochemical investigations on the volcanic rocks in the Lesser Hinggan Range show that both Fuminghe and Ganhe Formations are characterized by significant large ion lithophile elements (LILE) and light rare earth elements (LREE) enrichment coupled with high field strength elements (HFSE) depletion, but they have distinct Sr and Nd isotopic compositions. The Fuminghe Formation has relative high 87Sr/86Sr ratios of 0.707253 to 0.707373, and negative εNd(t) values of ?2.78 to ?3.05 (t = 108 Ma), whereas the Ganhe Formation displays slightly lower 87Sr/86Sr range of 0.705434–0.705763 and positive εNd(t) values of + 0.76 to +1.83. These geochemical data suggest that the rhyolitic magmas of the Fuminghe Formation probably represent the final differentiates of parental andesitic magmas, resulted from the partial melting of mafic lower crust, whereas the volcanic rocks of the Ganhe Formation were produced by fractionation of basaltic magmas generated from partial melting of a mixture of an incompatible element depleted anhydrous lherzolite asthenospheric mantle source and a hydrous enriched lithospheric mantle source in an extensional tectonic setting, in response to upwelling of asthenospheric mantle. The rhyolite porphyries of the Fuminghe Formation are inferred to have supplied heat that drove the convective hydrothermal system at Dong'an deposit, but also provided some of the fluid sources responsible for the development of the Dong'an epithermal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号