首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variable star V1129 Cen is classified in the GCVS as being of β Lyr type. Unusual for such stars, it exhibits outbursts roughly once a year, lasting for ∼ 40 days. For this reason, a relationship to the dwarf novae has been suspected. Here, for the first time a detailed analysis of the light curve of the system is presented. Based on observations with high time resolution obtained at the Observatório do Pico dos Dias and on the long term ASAS light curve the orbital variations of the system are studied. They are dominated by ellipsoidal variations and partial eclipses of a probably slightly evolved F2 star in a binary with an orbital period of 21h 26m. Comparison with the characteristics of dwarf novae show that the observational properties of V1129 Cen can be explained if it is just another dwarf novae, albeit with an unusually bright and early type mass donor which outshines the accretion disk and the mass gainer to a degree that many normal photometric and spectroscopic hallmarks of cataclysmic variables remain undetected.  相似文献   

2.
Results are presented from photometric studies of the dwarf nova V1108 Her conducted at the primary focus of the 2.6-m G. A. Shajn Telescope at the Crimean Astrophysical Observatory during June-July 2008, 4 years after the 2004 outburst. An orbital period of 0.05672(4) days is found for the system. An analysis of observations made earlier during the 2004 outburst reveals an orbital signal which indicates that V1108 Her is an eclipsing system. The mass ratio of the secondary component to the white dwarf is estimated to be q = 0.068, which makes it highly likely that the secondary component of this system is a brown dwarf. The orbital light curves indicate a complex structure for the accretion disk whose radius has reached a 2:1 resonance. An explanation is suggested for a quasi-periodic modulation in the brightness at 1/4 of the orbital period observed in V1108 Her and other WZ Sge systems.  相似文献   

3.
A brief history of investigations of Lyr, an emission‐line binary and one of the first ever discovered Be stars is presented. A rather fast progress in the understanding of this enigmatic object during the past fifteen years is then discussed in some detail. The current picture of β Lyr is that it is an eclipsing binary in a stage of mass transfer between the components. The mass‐losing star is a B6‐8II object, with a mass of about 3 M, which is filling the Roche lobe and sending material towards its more massive companion at a rate of about 2 × 10—5 M yr—1. This leads to the observed rapid increase of the orbital period at a rate of 19 s per year. The mass‐gaining star is as early B star with a mass of about 13 M. It is completely hidden inside an opaque accretion disk, jet‐like structures, perpendicular to the orbital plane and a light‐scattering halo above the poles of the star. The observed radiation of the disk corresponds to an effective temperature which is much lower than what would correspond to an early B star. The disk shields the radiation of the central star in the directions along the orbital plane and redistributes it in the directions perpendicular to it. That is why the mass‐losing star appears brighter of the two in the optical region of the spectrum. At present, rather reliable estimates of all basic properties of the binary and its components are available. However, in spite of great progress in understanding the system in recent years, some disagreement between the existing models and observed phase variations still remains, both for continuum and line spectrum, which deserves further effort.  相似文献   

4.
New standardized V ‐band light curves (LCs) for the eclipsing binary SV Cam have been modeled using the PHOEBE program (v. 0.31a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass‐radius diagram. Analysis of eclipse minima timing data (OC diagrams) indicated two cyclic periods of 48.0 and 23.3 yr. These cyclic variations of the orbital period are interpreted in terms of motion of a third body around the system and magnetic activity cycle modulating the orbital period of SV Cam via the Applegate (1992) mechanism. The use of the Applegate model for SV Cam has been checked by examining the long term brightness variation and calculating some important parameters of this system. The results of these calculations favor the modulation of the orbital period by the Applegate mechanism. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Photoelectric photometry of the unusual binary system, whose light curve shows peculiar light variations, has been done in the two colours. The observations obtained at the Ege University Observatory between 1973 and 1978 and at the Kottamia Observatory in November 1977 show a variable light curve. The observed variations in the light curve show a migrating wave towards a decreasing orbital phase similar to those observed in RS CVn-binaries. The migration period appears to be about 191 days. The times of minima indicate that there has been a decrease on the orbital period of the system. However, since there is not enough material on the observed times of minima, we cannot explain whether the decrease in the orbital period has been sudden or gradual. The radii of the components have been computed from the primary minimum alone. With the available spectroscopic data, the absolute dimensions of the components are also presented. It appears to be difficult to explain the evolution of the system without taking into consideration the mass loss. The proposed models for the evolution of the system and an explanation of the observed light variations are also presented.  相似文献   

6.
We report additional photometric CCD observations of KPD 0422+5421, a binary with an orbital period of 2.16 h which contains a subdwarf B star (sdB) and a white dwarf. There are two main results of this work. First, the light curve of KPD 0422+5421 contains two distinct periodic signals, the 2.16-h ellipsoidal modulation discovered by Koen, Orosz & Wade and an additional modulation at 7.8 h. This 7.8-h modulation is clearly not sinusoidal: the rise time is about 0.25 in phase, whereas the decay time is 0.75 in phase. Its amplitude is roughly half of the amplitude of the ellipsoidal modulation. Secondly, after the 7.8-h modulation is removed, the light curve folded on the orbital period clearly shows the signature of the transit of the white dwarf across the face of the sdB star and the signature of the occultation of the white dwarf by the sdB star. We have used the Wilson–Devinney code to model the light curve to obtain the inclination, the mass ratio and the Ω potentials, and a Monte Carlo code to compute confidence limits on interesting system parameters. We find component masses of     and     ( M total     , 68 per cent confidence limits). If we impose an additional constraint and require the computed mass and radius of the white dwarf to be consistent with a theoretical mass–radius relation, we find     and     (68 per cent confidence limits). In this case the total mass of the system is less than 1.4 M at the 99.99 per cent confidence level. We briefly discuss possible interpretations of the 7.8-h modulation and the importance of KPD 0422+5421 as a member of a rare class of evolved binaries.  相似文献   

7.
SuperWASPJ222302.02+195031.8 is an eclipsing binary with an orbital period about 0.22517657 days that is close to the short-period limit of contact binaries. Multi-color photometric light curves of the short-period binary in B, V, Rc and Ic bands are presented and analyzed by using the Wilson–Devinney (W–D) method. It is discovered that the system is a semi-detached binary where the secondary component is already filling the critical Roche lobe, while the primary is filling just 77.1% of its Roche lobe. The temperature of the primary is about 4300 K, and the temperature difference between the two components is about 500 K. The asymmetries in the light curves are explained by the coverage of stellar dark spots on the less massive component via magnetic activity. An analysis of all available eclipse times suggests that there are no any changes in the O-C diagram. This may indicate that there are no mass transfers between the two components. The semi-detached configuration with the dark spot on the surface of the lobe-filling secondary and no variations in the orbital period make the binary an interesting target for further investigations.  相似文献   

8.
V471 Tau was discovered as a spectroscopic binary by Wilson (General Catalogue of Stellar Radial Velocities, p. 44, 1953). It is the prototype of a post-common envelope system and a progenitor of a cataclysmic binary. The system consists of a cool red dwarf, K2 V, very probably a main sequence star and a hot white dwarf. The object was classified as a close binary with an orbital period of around 0.5 days. Moreover, on the light curve are observed light variations with a period of 191 days, which are connected with an ellipsoidal shape of the red dwarf as well as with the migration of spots on the surface of this cool component. The eclipse of the white dwarf in the binary remains 49 minutes and declines to the minimum and the increase from the minimum takes only 55 s. Such photometric behaviour hinders obtaining good eclipses. In this paper we have obtained during four years seven eclipses with high time resolution with all four contacts to reach precise times of minima. Fortunately these times of the minima show a change of trend in the (O–C) diagram, and we were able to decide about the physical processes responsible for the behaviour of the (O–C) diagram. We showed that this behaviour is caused by a third body in the system with an orbital period of 33.2 years, and its physical and geometrical parameters are presented. For an inclination larger than 35° we get the mass of this body below the stable hydrogen-burning limit and thus most probably the candidate would be a brown dwarf.  相似文献   

9.
A photometric CCD study of EQ Tauris was carried out in the R, V and B bands. These new data were analyzed by using the PHOEBE and Binary Marker 3 programs, which yielded the geometrical system parameters and mass and radius of both stars. We find these to confirm the results of Pribulla and Vanko (2002). Using these new data together with data from the literature, the orbital period variations were studied by using the Kalimeris method. We find the same timescale of variability of the orbital period as Pribulla and Vanko (2002), namely about 49 years.  相似文献   

10.
Exoplanet observations have been performed on the automated Pulkovo Observatory telescopes. We have obtained 33 transit light curves for 16 known exoplanets and six transit observations for three exoplanet candidates discovered by the Kepler telescope. Based on our observations, we have reliably confirmed the existence of an exoplanet with an extremely large radius, R pl = 1.83 ± 0.16R Jup, in the system KOI 256 and detected a strong deviation of its orbital revolution from the theoretically predicted one. During the transit of the exoplanet WASP-12b across the stellar disk, we detected bursts that could be caused by the planet transit across spots on the star or by the presence of a satellite around this exoplanet. We detected possible periodic variations in the duration of the exoplanet transit across the stellar disk with time for HAT-P-12b that could be caused by variations in orbital inclination. The transit duration and depth, the central transit time, and the radius and orbital inclination of the planet have been estimated. The equilibrium temperature and albedo have been estimated for several exoplanets.  相似文献   

11.
本文发表了1984年11月至1985年1月期间在美国McDonald天文台对大陵五型食双星CI Aur进行的UBV测光结果,以及采用Wilson-Devinney方法求解出它的轨道要素。结果表明CI Aur是一个半分离的双星系统,它的次星充满了Roche瓣,而主星离它的Roche等位面相离很远。两颗子星温度相差很大,质量比为0.687,轨道倾角i为74.42°。 CI Aur的光变曲线呈现随机的亮度“抖动”和明显的光变起伏。作者采用了自迴归功率谱方法和调和分析方法对它的光变起伏进行了频谱分析,求出了振荡的准周期和振幅。文章最后讨论了它的两种模型。  相似文献   

12.
We report an 11-year long series of U BV RI observations and the results of our monitoring of the classical slow nova V723 Cas. We analyze the spectra of this star taken using the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with a spectral resolution of 3.5–8.5 Å during the nebular stage and at the supersoft X-ray source phase (SSS). This systemhas a large orbital inclination and its orbital period is equal to 0.693265 days. The orbital period increases. We found low-amplitude light variations with the orbital period during the early stages of the outburst and even at the pre-maximum stage. The orbital light curve at the nebular stage is asymmetric and gradually increases its amplitude up to V=2 m in 2006. The asymmetry of the light curve of V723 Cas can be explained by the reflection effect, eclipse of the extended accretion disk, and high rate of mass transfer in the system. The light curve of V723 Cas has developed a plateau due to the SSS phase. In the spectrum of V723 Cas the transition to the SSS phase shows up in an order-of-magnitude increase of the flux of the [Fe X] λ 6374 Å emission, which forms in the expanding envelope. In addition, narrow emission lines λ 6466.4 Å (O V) and λ 6500.5 Å (Fe XVII) also emerged in the spectrum.  相似文献   

13.
《New Astronomy》2007,12(3):192-200
New BVR light curves and photometric analysis of the contact binary star V829 Her are presented. The light curves were obtained at the ÇOMU Observatory in the consecutive years 2003, 2004 and 2005. Firstly, the variation of the orbital period of the system was studied. The sinusoidal and secular changes were found and examined in terms of two plausible mechanisms, namely (i) the conservative mass transfer between the components of the system and (ii) the light-time effect due to an unseen component in the system. The instrumental magnitudes of all observed stars in this study were converted into standard magnitudes. We also study nature of asymmetries and the intrinsic variability in the light curves of the system. Light variations are summarized: (a) changes of light levels of both maxima and (b) changes of the depths of both primary and secondary eclipses. These peculiar asymmetries were interpreted in terms of dark spot(s) on the surface of the large and more massive component star. The present BVR light curves and radial velocity curves obtained by Lu, W., Rucinski, S. M., 1999. AJ 118, 515 were analysed by means of the latest version of the Wilson–Devinney program, simultaneously. Thus, the absolute parameters of the system were also derived.  相似文献   

14.
V. P. Grinin 《Astrophysics》2000,43(4):446-457
A young binary system is considered, having a mass ratio of components M 2/M 1 1, in which the low-velocity part of the stellar wind of the low-mass component (the so-called disk wind) can be partially captured by the gravitation of the primary component. It is shown that a large-scale redistribution of matter and angular momentum between the inner and outer parts of the gas-dust disk surrounding the binary system occurs as a result, with a consequent increase in the rate of accretion onto the primary component. In cases in which the orbital eccentricity of the secondary component is nonzero, modulation of the rate of accretion onto the primary component should be observed with a period equal to the orbital period, while in the case of a highly elongated orbit the mass accretion acquires a pulsed character. Since dust may be present in the disk wind from the secondary component, the capture of stellar wind will result in an increase in the effective geometrical thickness of the gas-dust disk. For this reason, the infrared (IR) emission excesses of such stars (especially in the near-IR range) and their intrinsic polarization can be considerably greater than in the case of a single star surrounded by a circumstellar disk of the same mass, and a periodic component may also be present in their behavior with time. Moreover, because of disruption of the axial symmetry in the dust distribution in the vicinity of the young binary system, the orbital period may also be present in its brightness variations. The role of these effects in the physics of young stars is discussed.  相似文献   

15.
The eclipsing binary system AI Dra reveals changes of its orbital period. These variations could be described as a result of orbiting the eclipsing pair around a common center of mass with two unseen companions with the periods about 18 and 43 years together with a steady period increase. Fourteen new minima observations were carried out by the authors.  相似文献   

16.
We present a detailed, extensive investigation of the photometric and spectroscopic behaviour of WR 30a. This star is definitely a binary system with a period around 4.6 d. We propose the value         . The identification of the components as WO4+O5((f)) indicates a massive evolved binary system; the O5 component is a main-sequence or, more likely, a giant star. The radial velocities of the O star yield a circular orbit with an amplitude         and a mass function of 0.013     . The spectrum of WR 30a exhibits strong profile variations of the broad emission lines that are phase-locked with the orbital period. We report the detection of the orbital motion of the WO component with     , but this should be confirmed by further observations. If correct, it implies a mass ratio     . The star exhibits sinusoidal light variations of amplitude 0.024 mag peak-to-peak with the minimum of light occurring slightly after the conjunction with the O star in front. On the basis of the phase-locked profile variations of the C  iv λ 4658 blend in the spectrum of the WO, we conclude that a wind–wind collision phenomenon is present in the system. We discuss some possibilities for the geometry of the interaction region.  相似文献   

17.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

18.
This study presents an investigation of the orbital period variations of five Algol type binaries, UX Leo, RW Mon, EQ Ori, XZ UMa and AX Vul based on all available minima times. The OC diagrams of all systems exhibit a periodic variation superimposed on a downward parabolic segment. The mass loss due to magnetic braking effect in the cooler components is assumed to account for the parabolic variation with a downward shape, while it is suggested that the light-time effect (LITE) due to an unseen component around the eclipsing binaries explains the tilted sinusoidal changes in their OC diagrams. The orbital period decrease rates for the systems are estimated as approximately between about 0.7 and 2.5 s per century. It is clearly seen that mass loss effect is more dominant than the expected mass transfer for classical Algols in this study. The minimum mass of the probable third bodies around the eclipsing pairs was calculated to be ?0.5 M except for UX Leo, in which it was estimated to be approximately 0.9 M. In order to search for third lights in the light curves of five systems, the V-light curves of the systems were analyzed and their physical and photometric parameters were determined. For UX Leo, a significant third light contribution was determined. We found a very small third light that can be tested using multi-color light curves, for RW Mon, EQ Ori and XZ UMa, while a third light for AX Vul could not be exposed.  相似文献   

19.
Orbital period variations of the Algol-type eclipsing binary, VW Hydrae, are analyzed based on one newly determined eclipse time and the other times of light minima collected from the literature. It is discovered that the orbital period shows a continuous increase at a rate of dP/dt = +6.34×10-7 d yr-1 while it undergoes a cyclic change with an amplitude of 0.0639 d and a period of 51.5 yr. After the long-term period increase and the large-amphtude period oscillation were subtracted from the O-C curve, the residuals of the photoelectric and CCD data indicate a small-amplitude cyclic variation with a period of 8.75 yr and a small amplitude of 0.0048d. The continuous period increase indicates a conservative mass transfer at a rate of dM2/dt = 7.89×10-8 M⊙ yr-1 from the secondary to the primary. The period increase may be caused by a combination of the mass transfer from the secondary to the primary and the angular momentum transfer from the binary system to the circumbinary disk. The two cyclic period oscillations can be explained by light-travel time effects via the presence of additional bodies. The small-amplitude periodic change indicates the existence of a less massive component with mass M3 > 0.53 M⊙, while the large-amplitude one is caused by the presence of a more massive component with mass M4 > 2.84 M⊙. The ultraviolet source in the system reported by Kviz & Rufener (1987) may be one of the additional components, and it is possible that the more massive one may be an unseen neutron star or black hole. The rapid period increase and the possibility of the presence of two additional components in the binary make it a very interesting system to study. New photometric and high-resolution spectroscopic observations and a detailed investigation of those data are required in the future.  相似文献   

20.
We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626–67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3σ upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb-Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号