首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对江汉平原主要河流沉积物的重矿物组合、特征矿物以及能够反映沉积物稳定状况、物源及成熟度的重矿物特征指数(ATi,GZi和ZTR)进行对比分析,发现在江汉平原范围内,长江和汉江及其长江主要支流的沉积物中重矿物特征具有显著的差异。长江的重矿物组合模型为:  锆石+绿帘石+辉石+绿泥石+金属矿物,特征矿物是锆石和辉石;   汉江的重矿物组合模型为:  绿帘石+角闪石+石榴石+绿泥石+金属矿物,特征矿物是角闪石、石榴石;   另外,清江、漳河、沮水和玛瑙河的重矿物组合及特征矿物也都完全不同。而且各水系的沉积物的重矿物特征与其源区的岩性分布显示出极好的相关性。研究表明在江汉平原利用重矿物特征及组合模型来进行物源示踪的方法开展水系演化研究是可行的。  相似文献   

2.
Carbonatite magmas precipitate silicates, in addition to the abundant carbonates, oxides, and phosphates. Calculated silica activities for equilibria involving silicates and a silica component in magmatic liquids predict specific assemblages for silicate and oxide phases in carbonatites. These assemblages provide tests of alternative sources (carbonatite magma, coeval silicate magma, or older rock) for silicate minerals in carbonatites. Quartz, feldspars, and orthopyroxene are unlikely to be primary magmatic phases in carbonatites, because the silica activity in carbonatite magmas is too low to stabilize these minerals. Zircon and titanite should be unstable relative to baddeleyite and perovskite, respectively, but they do occur in carbonatites. Liquids dominated by carbonate are strongly nonideal with respect to dissolved silica. Consequently, activity coefficients for a silica component in carbonatite liquids are >>1, so that small mole fractions of SiO2 translate into silica activities sufficient to stabilize phlogopite, clinopyroxene, amphibole, monticellite, and forsterite, among other silicates. Examination of silicate mineral assemblages in carbonatites in the light of silica activity indicates that many carbonatites are contaminated by solid silicate phases from external sources but these xenocrysts can be discriminated from magmatic minerals.  相似文献   

3.
Data on compositions of coexisting minerals in the graphite-bearing carbonatites of the Chernigovka massif are reported. Thermodynamic analysis of these results made it possible to establish that the temperature of equilibrium between graphite, dolomite, calcite, magnetite, and olivine for silica activity buffered by the (zircon + baddeleyite) assemblage is approximately 600°C. The minimal pressure of formation of these mineral assemblages is approximately 0.2 GPa, which is consistent with estimates of the erosion depth for the Chernigovka massif. The oxygen fugacity typical of the graphite-bearing carbonatite is 0.6–0.8 log units below the quartz-magnetite-fayalite buffer. Such values are typical of magmatic systems, e.g., basalts of the mid-ocean ridges (MORB). At 600°C, the gas phase in the C-H-O system equilibrated with the mineral assemblage of the carbonatite studied is dominated by CO2 and H2O, whereas methane-rich fluids appear at lower temperatures.  相似文献   

4.
The Kangankunde Carbonatite Complex from the Cretaceous Chilwa Alkaline Province in southern Malawi contains ankeritic and siderite carbonatite that are affected by late stage remobilisation by a carbothermal or hydrothermal fluid. The coarse pegmatitic siderite carbonatite that hosts exotic minerals like monazite, synchysite, bastnasite, strontianite and apatite in vugs and cavities constitutes some of the richest rare earth deposits in the world. Besides these minerals, our studies reveal the presence of collinsite and aragonite from the siderite carbonatite. Fine drusy monazites are seen as overgrowths on thin veinlets of siderite within the rare earth mineralised zones. We present unambiguous SEM-based surface textural evidence such as presence of dissolution-corrosion features like etching along cleavage, solution channels, solution pits, sinstered scaly surface, etc. along with rare earth mineralisation that suggests the exotic minerals in the siderite carbonatite did not crystallise from carbonate magma and are a result of sub-solidus processes involving carbonatite-derived fluids. We believe that the monazite-synchysitebastnasite-strontianite-collinsite assemblages were formed by juvenile post magmatic hydrothermal alteration of pre-existing carbonatite by a complex CO2-rich and alkali chloride-carbonate-bearing fluid at ~250 to 400°C in an open system. This late ‘magmatic’ to ‘hydrothermal’ activity was responsible for considerable changes in rock texture and mineralogy leading to mobility of rare earth elements during fluid-rock interaction. These aspects need to be properly understood and addressed before using trace and rare earth element (REE) geochemistry in interpreting carbonatite genesis.  相似文献   

5.
通过对吐哈盆地中北部中侏罗统重矿物组合特征分析发现,该区重矿物组合具有显著的分区特征。其中桃尔沟-胜南-吐南地区整个中侏罗世,重矿物以高含量的磁铁矿、赤铁矿为特征。七泉湖-胜金地区在西山窑组-三间房组沉积时期,重矿物以锆石和钛的氧化物为主;自七克台组沉积伊始,磁铁矿含量显著增加。三堡-鲁克沁地区在西山窑组沉积时期,重矿物以锆石和钛的氧化物为主;到三间房组-七克台组沉积时期,石榴石、磁铁矿含量明显增加。鄯勒-萨克桑地区西山窑组沉积时期重矿物以锆石和钛的氧化物为主;三间房组沉积以来,磁铁矿含量急剧增加。丘陵-丘东地区西山窑组-三间房组沉积时期,重矿物以高含量绿帘石为特征;七克台组沉积时期,转而以锆石和钛的氧化物为主。研究区中侏罗统重矿物组合演化特征显示,中侏罗世博格达山的隆升具有明显的分段性:Ⅰ段(西)在西山窑组沉积时期便已隆起,构成盆地物源区;西山窑晚期-三间房初期,博格达山Ⅲ段(东)开始快速隆升,导致三间房组沉积时期鄯勒-萨克桑地区磁铁矿含量剧增;而博格达山Ⅱ段(中)直到七克台组初期才开始隆升。  相似文献   

6.
A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238U ages between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. 430–440 Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neo-proterozoic lower continental crust.  相似文献   

7.
本文主要对沂水青龙峪出露的超镁铁质岩石和基性麻粒岩进行了锆石SHRIMP U-Pb定年研究。超镁铁质岩石以捕掳体形式存在于沂水杂岩中,不发育鬣刺结构,氧化物组成具有超镁铁质科马提岩的高MgO、富CaO、低SiO2、TiO2、K2O和Na2O含量特征;矿物组合以单斜辉石+橄榄石±斜方辉石+铬铁矿为主;变质矿物以角闪石+蛇纹石化为特征;该岩石以稀土元素总含量(∑REE)低、LREE/HREE=3.35~4.40及Ce和Eu负异常为特征。微量元素组成以Ba、Nb、Zr负异常和Nd、Sm正异常为特征。根据锆石SHRIMP U-Pb定年法对该超镁铁质岩石中捕获的早期岩浆结晶锆石和新生的变质锆石进行的研究,年龄值分别为2657~2702Ma和2551~2585Ma,表明该超镁铁质岩石形成年龄为2585~2657Ma。基性麻粒岩的氧化物组成特征表明其属高Mg的洋岛拉斑玄武岩,麻粒岩相——高角闪岩相变质作用与新太古代的深熔和岩浆侵入作用有关,矿物组合以紫苏辉石+单斜辉石±角闪石+斜长石±石榴子石为特征;晚期蚀变作用与辉长岩墙、辉绿岩脉及石英闪长岩买的侵入有关,矿物组合以滑石化+绢云母化+绿泥石化为特征;稀土元素组成以轻重稀土元素无分异和无Eu异常为特征;微量元素组成以Nb、Zr、P、Ti负异常和Sr、K正异常为特征;锆石SHRIMP U-Pb定年结果表明麻粒岩相——角闪岩相变质作用年龄为2498.4±7.6Ma,导致麻粒岩相——角闪岩相变质的深熔和岩浆结晶年龄为2551±24Ma,晚期蚀变作用的年龄分别为2231~2235Ma和1850±19Ma。  相似文献   

8.
Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite facies zones of the Higo low‐P/high‐T metamorphic terrane. Here, we report data from an outcrop in the highest grade part of the granulite facies zone, in which diatexite occurs as a 3 m thick layer between 2 m thick layers of stromatic‐structured metatexite within pelitic gneiss. The migmatites and gneiss contain the same peak mineral assemblage of biotite + plagioclase + quartz + garnet + K‐feldspar with retrograde chlorite ± muscovite and some accessory minerals of ilmenite ± rutile ± titanite + apatite + zircon + monazite ± pyrite ± zinc sulphide ± calcite. Calculated metamorphic P–T conditions are 800–900 °C and 9–12 kbar. Zircon in the diatexite forms elongate euhedral crystals with oscillatory zoning, but no core–rim structure. Zircon from the gneiss and metatexite forms euhedral–subhedral grains comprising inherited cores overgrown by thin rims. The overgrowth rims in the metatexite have lower Th/U ratios than zircon in the diatexite and yield a 206Pb/238U age of 116.0 ± 1.6 Ma, which is older than the 110.1 ± 0.6 Ma 206Pb/238U age derived from zircon in the diatexite. Zircon from the diatexite has variable REE contents with convex upward patterns and flat normalized HREE, whereas the overgrowth rims in the metatexite and gneiss have steep HREE‐enriched patterns; however, both types have similar positive Ce and negative Eu anomalies. 176Hf/177Hf ratios in the overgrowth rims from the metatexite are more variable and generally lower than values from zircon in the diatexite. Based on U–Pb ages, trace element and Hf isotope data, the zircon rims in the metatexite are interpreted to have crystallized from a locally derived melt, following partial dissolution of inherited protolith zircon during anatexis, whereas the zircon in the diatexite is interpreted to have crystallized from a melt that included an externally derived component. By integrating zircon and petrographic data for the migmatites and pelitic gneiss, the metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived juvenile component. The Cretaceous high‐temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle‐derived basalts under a volcanic arc along the eastern margin of the Eurasian continent and advection of heat via hybrid silicic melts from the lower crust. Post‐peak crystallization of anatectic melts in a high‐T region at mid‐crustal depths occurred in the interval c. 116–110 Ma, as indicated by the difference in zircon ages from the metatexite and diatexite migmatites.  相似文献   

9.
Contact metamorphism in the aureole of the 1322 Ma Makhavinekh Lake Pluton, northern Labrador, affected monazite and zircon in the adjacent 1850 Ma metapelitic gneisses. Transformation of regional garnet and sillimanite to lower-pressure symplectitic intergrowths of cordierite, orthopyroxene, and spinel was accompanied by resorption of inherited monazite inclusions in garnet coupled with the appearance of coronitic high-Y monazite rims. In situ ion-microprobe dating is used to show that high-Y rims formed during contact metamorphism. Liberation of Y and HREE from garnet also gave rise to new xenotime growth. The coronitic nature of monazite overgrowths reflects the diffusion-controlled nature of net-transfer reactions whereas its higher Y composition reflects equilibration with xenotime at peak T (> 800 °C) conditions in the inner aureole. Very thin overgrowths on inherited zircon were also encountered, but only where zircon is surrounded by the symplectitic assemblage, reflecting liberation of Zr from garnet. Although these overgrowths are too thin to date using conventional ion-microprobe techniques, well-developed triple junctions between zircon and orthopyroxene suggests that they grew in textural equilibrium with the contact metamorphic assemblage.

In contrast to monazite, inherited zircon remained intact during contact metamorphism, exhibiting no change in morphology (other than the growth of thin rims) or internal zoning throughout the aureole. However, inherited sector-zoned zircons of anatectic origin display evidence for intracrystalline Pb redistribution in the inner aureole. In these samples, ion-microprobe analyses encountered heterogeneous Pb signals and a dispersion of 207Pb / 206Pb dates away from the well constrained 1850 Ma age of regional metamorphism. Whereas analyses from the outer aureole faithfully record the age of regional metamorphism, those from the inner aureole are normally and reversely discordant and distributed along a line collinear with a 1850 to 1322 Ma discordia. This disturbance is correlated with proximity to the pluton implying that Pb was mobile in the zircon lattice during contact metamorphism. Most grains are characterized by apparent Pb loss from low-U domains and apparent Pb gain in higher-U domains. These data are interpreted to reflect recovery of strained crystalline domains leading to expulsion of Pb* that was able to efficiently diffuse into higher-U domains that were partly amorphous prior to rapid reheating in the inner aureole.  相似文献   


10.
Zircon-bearing xenoliths in continental basalts are often interpreted as witnesses of the continental basement uplifted during volcanic eruptions. Nevertheless, their origin is still debated. The Devès basaltic plateau belongs to the alkaline volcanic province of the French Massif Central. In few outcrops, zircon-bearing nepheline syenite xenoliths were preserved. U–Pb dating of the zircon crystals define an age of 956 ± 11 kyr constraining the crystallisation time of the zircons and consequently of the host xenoliths. This age, together with mineral chemistry arguments lead us to conclude that these minerals do not derive from a continental protolith. Rather, they likely result from the crystallisation of a liquid characterised by a nepheline–felspar composition and produced by the differentiation of a basaltic magma or, alternatively, by the low degree partial melting of a metasomatised lithospheric mantle. Such alkaline sialic rock and xenoliths may occur in large volumes at depth and generate the large amounts of zircon megacrysts discovered worldwide in secondary deposits within continental basaltic provinces.  相似文献   

11.
Progressive metamorphism of impure dolomitic limestone in the 1.5 to 2.5 km wide contact aureole surrounding the northernmost portion of the boulder batholith has resulted in a consistent sequence of uniformly distributed zones of low-variance mineral parageneses separated by abrupt and distinctive isograds. In silica-undersaturated, aluminous marbles, the following mineral assemblages occur, in order of increasing grade: calcite-dolomite-calcic amphibole-chlorite, calcite-dolomite-calcic amphibole-chlorite-spinel, calcite-dolomite-calcic amphibole-chlorite-olivine-spinel, calcite-dolomite-chlorite-olivine-spinel, calcite-dolomite-olivine-spinel. The spatial distribution of parageneses and the occurrence of low-variance parageneses indicate buffering of the pore fluid composition by the local mineral assemblages. The observed sequence of mineral reactions and the spacing of isograds is in good agreement with experimental and calculated equilibria in terms of P-T-X CO 2and temperatures of equilibration inferred from calcite-dolomite geothermometry, which range from 435 to 607 °C across the aureole.Microprobe analyses of coexisting minerals indicate attainment of exchange equilibrium. Calcic amphibole and chlorite coexisting with calcite and dolomite become progressively more aluminous with increasing grade; calcic amphibole changes rapidly from Al-poor tremolite to pargasite, while AlIV in Cte increases from 2.0 to 2.3 atoms per 8 tetrahedral sites. Observed low-variance assemblages fix the activities of calcic amphibole and chlorite end-member components as a function of P and T, and hence the systematic compositional variation in these phases is not an independent variable, but is controlled by the local mineral assemblage.  相似文献   

12.
A natural, altered zircon crystal from an alkaline pegmatite from the Zomba–Malosa Complex of the Chilwa Alkaline Province in Malawi has been studied by a wide range of analytical techniques to understand the alteration process. The investigated zircon shows two texturally and chemically different domains. Whereas the central parts of the grain (zircon I) appear homogeneous in backscattered electron images and are characterised by high concentrations of trace elements, particularly Th, U, and Y, the outer regions (zircon II) contain significantly less trace elements, numerous pores, and inclusions of thorite, ytttrialite, and fergusonite. Zircon II contains very low or undetectable concentrations of non-formula elements such as Ca, Al, and Fe, which are commonly observed in high concentrations in altered radiation-damaged zircon. U–Pb dating of both zircon domains by LA-ICPMS and SHRIMP yielded statistically indistinguishable U–Pb weighted average ages of 119.3 ± 2.1 (2σ) and 118 ± 1.2 (2σ) Ma, respectively, demonstrating that the zircon had not accumulated a significant amount of self-irradiation damage at the time of the alteration event. Electron microprobe dating of thorite inclusions in zircon II yielded a Th–U-total Pb model age of 122 ± 5 (2σ) Ma, supporting the age relationship between both zircon domains. The hydrothermal solution responsible for the alteration of the investigated zircon was alkaline and rich in CO3 2−, as suggested by the occurrence of REE carbonates and CO2-bearing fluid inclusions. The alteration of the crystalline, trace element-rich zircon is explained by an interface-coupled dissolution-reprecipitation mechanism. During such a process, the congruent dissolution of the trace element-rich parent zircon I was spatially and temporally coupled to the precipitation of the trace element-poor zircon II at an inward moving dissolution-precipitation front. The driving force for such a process was merely the difference between the solubility of the trace element-rich and -poor zircon in the hydrothermal solution. The replacement process and the occurrence of mineral inclusions and porosity in the product zircon II is explained by the thermodynamics of solid solution-aqueous solution systems.  相似文献   

13.
锆石成因矿物学与锆石微区定年综述   总被引:54,自引:0,他引:54  
李长民 《华北地质》2009,32(3):161-174
锆石是岩浆岩、变质岩和石英脉型金矿床中的一种常见副矿物,对锆石成因类型的准确判断是正确理解锆石U-Pb年龄意义的关键.本文中笔者对不同成因类型锆石的判别标志及年龄意义进行系统的总结,并认为将锆石的阴极发光图像(CL)、背散射电子图像(BSE)、痕量元素组成及矿物包裹体特征的研究相结合是进行锆石成因鉴定的有效方法.近年来同位素质谱技术的发展使得人们对同一锆石颗粒内部不同成因类型的锆石晶域进行原位年龄测定成为可能.通过微区原位定年技术,能够给出有关寄主岩石的地质演化历史等重要信息,这可以为地质过程的精细年代学格架的建立提供有效的证据.来自不同类型岩石中的锆石可能经历了Pb的扩散丢失作用、晶格损伤导致的蜕晶化作用以及变质重结晶作用.这些过程对锆石计时的准确性和有效性带来了不同程度的影响.为了对测定锆石年龄的地质意义进行合理解释,在进行锆石U-Pb定年前,必需对锆石进行成因矿物学和矿物内部结构的深入研究,特别是阴极发光和背散射电子成像研究,通过内部结构特征确定锆石的成因类型和形成环境.笔者认为,组成单一的岩浆锆石是理想的U-Pb定年对象,变质重结晶锆石域常是重结晶锆石和继承晶质锆石的混合区,容易给出混合年龄,只有变质增生锆石和完全变质重结晶锆石才能给出准确的变质时代,而从继承锆石中鉴别出的热液锆石可以获得可靠的流体活动时间.  相似文献   

14.
以果松盆地果松组火山岩为研究对象,对标准剖面安山岩进行了精确的锆石U-Pb定年分析,旨在确定其形成时代。样品中的锆石多呈自形-半自形晶,振荡环带发育,Th/U比值在0.48~2.77之间,显示其典型的岩浆成因。锆石U-Pb定年结果显示,原定中晚侏罗世的果松组火山岩形成于130 Ma(加权平均年龄为130±2 Ma,MSWD=0.48)或129 Ma(加权平均年龄为129±2 Ma,MSWD=0.14),应划归为早白垩世。根据果松盆地中生界岩石组合特点,结合新获得的火山岩测年数据和生物化石种群特征,重新厘定果松盆地中生代地层序列,进而讨论了果松盆地与邻区白垩纪地层单元的地层对比关系。  相似文献   

15.
为探究不同类型锡矿床所反映出的自然重砂矿物组合特征,统计了云南、福建、江西、浙江、湖南、青海和广西7省共35个典型锡矿床的自然重砂情况,通过计算和分析各自然重砂矿物在所对应类型矿床中的报出频率,得出矽卡岩型、热液脉型和斑岩型3种锡矿所对应的自然重砂矿物组合。所反映出的重砂矿物组合既有相似之处,如均出现锡石+白钨矿(或黑钨矿)的矿物组合,亦反映出不相同的地方,如矽卡岩型锡矿石榴子石报出率高,斑岩型锡矿锆石报出率高等。因此,按照矿床类型建立的自然重砂矿物组合对于建立自然重砂找矿模型具有重要意义。  相似文献   

16.
Summary Crystallization temperatures of the oceanic carbonatites of Fuerteventura, Canary Islands, have been determined from oxygen isotope fractionations between calcite, silicate minerals (feldspar, pyroxene, biotite, and zircon) and magnetite. The measured fractionations have been interpreted in the light of late stage interactions with meteoric and/or magmatic water. Cathodoluminescence characteristics were investigated for the carbonatite minerals in order to determine the extent of alteration and to select unaltered samples. Oxygen isotope fractionations of minerals of unaltered samples yield crystallization temperatures between 450 and 960°C (average 710°C). The highest temperature is obtained from pyroxene–calcite pairs. The above range is in agreement with other carbonatite thermometric studies.This is the first study that provides oxygen isotope data coupled with a CL study on carbonatite-related zircon. The CL pictures revealed that the zircon is broken and altered in the carbonatites and in associated syenites. Regarding geological field evidences of syenite–carbonatite relationship and the close agreement of published zircon U/Pb and whole rock and biotite K/Ar and Ar–Ar age data, the most probable process is early zircon crystallization from the syenite magma and late-stage reworking during magma evolution and carbonatite segregation. The oxygen isotope fractionations between zircon and other carbonatite minerals (calcite and pyroxene) support the assumption that the zircon would correspond to the early crystallization of syenite–carbonatite magmas.  相似文献   

17.
Although eclogites in the Belomorian Province have been regarded as Archean in age and among the oldest in the world, there are also multiple studies that have proposed a Paleoproterozoic age. Here, we present new data for the Gridino‐type eclogites, which occur as boudins and metamorphosed dykes within tonalite–trondhjemite–granodiorite gneisses. Zircon from these eclogites has core and rim structures. The cores display high Th/U ratios (0.18–0.45), negative Eu anomalies and strong enrichment in HREE, and have Neoarchean U–Pb ages of c. 2.70 Ga; they are interpreted to be magmatic in origin. Zircon cores have δ18O of 5.64–6.07‰ suggesting the possibility of crystallization from evolved mantle‐derived magmas. In contrast, the rims, which include the eclogite facies minerals omphacite and garnet, are characterized by low Th/U ratios (<0.035) and flat HREE patterns, and yield U–Pb ages of c. 1.90 Ga; they are interpreted to be metamorphic in origin. Zircon rims have elevated δ18O of 6.23–6.80‰, which was acquired during eclogite facies metamorphism. Based on petrography and phase equilibria modelling, we recognize a prograde epidote amphibolite facies mineral assemblage, the peak eclogite facies mineral assemblage and a retrograde high‐P amphibolite facies mineral assemblage. The peak metamorphic conditions of 695–755°C at >18 kbar for the Gridino‐type eclogites suggest an apparent thermal gradient of <39–42°C/kbar for the Lapland–Kola collisional orogeny.  相似文献   

18.
Palaeoproterozoic metasedimentary migmatite reflects the highest temperature parts of a regional aureole at Mt Stafford, central Australia, comprising rocks that experienced 500–800 °C at ≈3 kbar. Whole‐rock major element concentrations are correlated with Zr content, psammitic compositions having nearly twice the Zr content of pelitic compositions. Zirconium is concentrated in mesosome compared with leucosome. Zircon is largely detrital, mostly lacking any overgrowth contemporary with migmatite formation. Comparatively small proportions of micro‐zircon (<10 μm) in sub‐solidus rocks are mostly hosted by quartz and plagioclase. Much higher proportions (three to five times) of micro‐zircon in migmatite are hosted by prograde K‐feldspar, cordierite and biotite. TX and PT NCKFMASHTZr pseudosections constructed using thermocalc model the distribution of Zr between solid and silicate liquid phases. Half of the detrital zircon (~100 ppm Zr) is predicted to be dissolved into silicate liquid at ≈800 °C and all dissolved by 850 °C, if all zircon is involved in the equilibration volume. Melt segregation at relatively low temperature is predicted to enrich the residuum in Zr, consistent with the observed distribution of Zr between mesosome and leucosome. The limited development of metamorphic zircon rims or overgrowths at Mt Stafford is explained by three concurrent processes: (i) Zr liberated during prograde metamorphism formed micro‐zircon, rather than following the prediction that Zr will partition into silicate liquid; (ii) some detrital zircon was probably armoured by other rock‐forming minerals, reducing Zr content in the effective bulk rock composition; and (iii) small proportions of melt loss during migmatization removed Zr that otherwise would have been available to form metamorphic rims.  相似文献   

19.
薄海军  申俊峰  董国臣  张翔  韦少港 《地质通报》2014,33(12):1878-1889
根据铜矿床的成因类型,对全国177个铜矿床的自然重砂矿物进行统计分析。结果显示,自然重砂矿物对于铜矿床成因类型具有较好的指示意义。不同成因类型铜矿床的自然重砂矿物组合不同,尤其是岩浆型、斑岩型、矽卡岩型、火山岩型铜矿床均具有特征自然重砂指示矿物。除了铜矿物、铅锌矿物、黄铁矿、白钨矿等各类型铜矿床共有自然重砂矿物外,铬铁矿、镍黄铁矿、辉石、橄榄石等为岩浆型铜矿床的特征指示矿物,自然金、辉钼矿、磷灰石、磷钇矿等可以指示斑岩型铜矿床;锆石、锡石和石榴子石是矽卡岩型铜矿床的特征指示矿物;火山岩型铜矿床则以雄黄、雌黄作为特征指示矿物。这些研究对于建立不同成因类型铜矿的自然重砂找矿模型具有重要意义。  相似文献   

20.
本文论述了近年来白云鄂博矿区在旷物学、岩石学、地球化学和矿床成因研究方面的进展。在矿物学研究方面,除以往研究过的一百多种矿物外,八十年代中期以后,又相继发现并研究了含铌锐钛矿、含铌钙钛矿、锶铁钛石、水磷钙钍石、白云鄂博矿、未命名氟碳酸盐新种矿物、珀硅钛铈铁矿、硅钡镁石、带云母等矿物;发现了矿物间的共生和交代关系。在岩石学研究方面,找到了霓长岩,发现了霓长岩化作用,确定了火成碳酸岩岩石的存在。在地球化学和矿床成因方面,提出了稀土稀有金属矿化与火成碳酸岩岩浆活动有成因联系的见解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号