首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We propose a method to remove the mass-sheet degeneracy that arises when the mass of galaxy clusters is inferred from gravitational shear. The method utilizes high-redshift standard candles that undergo weak lensing. Natural candidates for such standard candles are type Ia supernovae (SNe Ia).
When corrected with the light-curve shape (LCS), the peak magnitude of SNe Ia provides a standard candle with an uncertainty in apparent magnitude of Δ m ≃0.1–0.2. Gravitational magnification of a background SN Ia by an intervening cluster would cause a mismatch between the observed SN Ia peak magnitude compared with that expected from its LCS and redshift. The average detection rate for SNe Ia with a significant mismatch of ≥2Δ m behind a cluster at z ≃0.05–0.15 is about 1–2 supernovae per cluster per year at J , I , R ≲25–26.
Since SNe are point-like sources for a limited period, they can experience significant microlensing by massive compact halo objects (MACHOs) in the intracluster medium. Microlensing events caused by MACHOs of ∼10−4 M⊙ are expected to have time-scales similar to that of the SN light curve. Both the magnification curve by a MACHO and the light curve of a SN Ia have characteristic shapes that allow us to separate them. Microlensing events caused by MACHOs of smaller mass can unambiguously be identified in the SN light curve if the latter is continuously monitored. The average number of identifiable microlensing events per nearby cluster ( z ≲0.05) per year is ∼0.02 ( f /0.01), where f is the fraction of the cluster mass in MACHOs of masses 10−7< M macho/M⊙<10−4.  相似文献   

4.
We test the distance-duality(DD) relation by combining the angular diameter distance DA provided by two galaxy cluster samples compiled by De Filippis et al.(the elliptical β model) and Bonamente et al.(the spherical β model),and the luminosity distance DL from Constitution and Union2 type Ia supernova(SNe Ia) datasets. To obtain DL associated with the observed DA at the same redshift,we smooth the noise of the SNe Ia in a model-independent way,obtain the evolutionary curve of DL and,finally,test the DD rel...  相似文献   

5.
6.
7.
8.
The effect of curvature on detonation speed and structure for detonation waves in C–O is investigated. Weakly curved detonation fronts have a sonic point inside the reaction zone. In such waves the detonation speed depends on the detailed internal structure and not on simple jump conditions. Hence, in order to obtain the correct propagation speed and products of burning, the reaction length-scales must be resolved in any numerical simulation involving curved detonations in C–O. For each value of the initial density there is a corresponding extinction curvature above which quasi-steady detonations cannot propagate. For densities less than 2×107 g cm−3, where the self-sustaining planar waves are Chapman–Jouguet, and for realistic values of the curvature, the sonic point moves from the end of silicon burning to the end of oxygen burning. Hence the effective detonation length, i.e. the length-scale of the burning between the shock and the sonic point which can affect the front, is several orders of magnitudes less than the planar waves predict. However, silicon burning, which occurs downstream of the sonic point, is increased in length by a few orders of magnitude owing to lower detonation speeds and temperatures. Therefore more intermediate-mass elements will be produced by incomplete burning if curvature is taken into account. Recent advances in detonation theory and modelling are also discussed in the context of Type Ia supernovae.  相似文献   

9.
Thanks to a stellar evolution code that is able to compute through the C flash we link the binary population synthesis of single degenerate progenitors of Type Ia supernovae (SNe Ia) to their physical condition at the time of ignition. We show that there is a large range of possible ignition densities and we detail how their probability distribution depends on the accretion properties. The low-density peak of this distribution qualitatively reminds of the clustering of the luminosities of Branch-normal SNe Ia. We tighten the possible range of initial physical conditions for explosion models: they form a one-parameter family, independent of the metallicity. We discuss how these results may be modified if we were to relax our hypothesis of a permanent Hachisu wind or if we were to include electron captures.  相似文献   

10.
11.
12.
13.
14.
15.
A combined sample of 79 high- and low-redshift Type Ia supernovae (SNe) is used to set constraints on the degree of anisotropy in the Universe out to z ≃1. First, we derive the global most probable values of matter density ΩM, the cosmological constant ΩΛ and the Hubble constant H 0, and find them to be consistent with the published results from the two data sets of Riess et al. and Perlmutter et al. We then examine the Hubble diagram (HD, i.e., the luminosity–redshift relation) in different directions on the sky by utilizing spherical harmonic expansion. In particular, via the analysis of the dipole anisotropy, we divide the sky into the two hemispheres that yield the most discrepant of the three cosmological parameters, and the scatter χ HD2 in each case. The most discrepant values roughly move along the locus −4ΩM+3ΩΛ=1 (cf. Perlmutter et al.), but by no more than Δ≈2.5 along this line. For a perfect Friedmann–Robertson–Walker universe, Monte Carlo realizations that mimic the current set of SNe yield values higher than the measured Δ in ∼1/5 of the cases (for ΩM). We discuss implications for the validity of the Cosmological Principle, and possible calibration problems in the SNe data sets.  相似文献   

16.
17.
18.
A three-dimensional Monte Carlo code for modelling radiation transport in Type Ia supernovae is described. In addition to tracking Monte Carlo quanta to follow the emission, scattering and deposition of radiative energy, a scheme involving volume-based Monte Carlo estimators is used to allow properties of the emergent radiation field to be extracted for specific viewing angles in a multidimensional structure. This eliminates the need to compute spectra or light curves by angular binning of emergent quanta. The code is applied to two test problems to illustrate consequences of multidimensional structure on the modelling of light curves. First, elliptical models are used to quantify how large-scale asphericity can introduce angular dependence to light curves. Secondly, a model which incorporates complex structural inhomogeneity, as predicted by modern explosion models, is used to investigate how such structure may affect light-curve properties.  相似文献   

19.
The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is a key to solving the mystery of dark energy. Improving the calibration of SNe Ia increases their power as cosmological standard candles. We find tentative evidence for a correlation between the late-time light-curve slope and the peak luminosity of SNe Ia in the B band; brighter SNe Ia seem to have shallower light-curve slopes between 100 and 150 d from maximum light. Using a Markov Chain Monte Carlo (MCMC) analysis in calibrating SNe Ia, we are able to simultaneously take into consideration the effect of dust extinction, the luminosity and light-curve width correlation (parametrized by  Δ m 15  ), and the luminosity and late-time light-curve slope correlation. For the available sample of 11 SNe Ia with well-measured late-time light curves, we find that correcting for the correlation between luminosity and late-time light-curve slope of the SNe Ia leads to an intrinsic dispersion of 0.12 mag in the Hubble diagram. Our results have significant implications for future supernova surveys aimed to illuminate the nature of dark energy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号