首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Petrographic and geochemical studies of peridotites from the South Sandwich forearc region provide new evidence for the evolution of the South Sandwich arc–basin system and for the nature of interactions between arc magma and oceanic lithosphere. Peridotites from the inner trench wall in the north-east corner of the forearc vary from clinopyroxene-bearing harzburgites, through samples transitional between harzburgites and dunites or wehrlites, to dunites. The harzburgites are LREE depleted with low incompatible element abundances and have chromites with intermediate Cr# (ca. 0.40). Modelling shows that they represent the residues from 15–20% melting at oxygen fugacities close to the QFM buffer. The dunites have U-shaped REE patterns, low incompatible element abundances and high Cr# (0.66–0.77). Petrography and geochemistry indicate that the latter are the product of intense interaction between peridotite and melt saturated with olivine under conditions of high oxygen fugacity (QFM + 2). The transitional samples are the product of lesser interaction between peridotite and melt saturated with olivine ± clinopyroxene. The data demonstrate that the harzburgites originated as the residue from melting at a ridge (probably the early East Scotia Sea spreading centre), and were subsequently modified to transitional peridotites and dunites by interaction with South Sandwich arc magmas. The second dredge locality, near the South Sandwich Trench–Fracture Zone intersection, yielded rocks ranging from lherzolite to harzburgite that could similarly have resulted from a two-stage melting and enrichment process, but involving a more fertile mantle residue and a reacting melt that is transitional between MORB and island arc tholeiite. The South Sandwich peridotites have a similar petrogenetic history to those from Conical Seamount in the Mariana forearc in the sense that both involved interaction between arc magma and pre-existing mantle lithosphere of different provenance. However, the precise compositions of the magma and mantle components vary from location to location according to the precise tectonic setting and tectonic history. Overall, therefore, data from the South Sandwich and Izu–Bonin–Mariana systems emphasise the potential significance of peridotite geochemistry in unravelling the complex tectonic histories of forearcs past and present. Received: 31 August 1999 / Accepted: 3 December 1999  相似文献   

2.
E.S. Farahat 《Lithos》2010,120(3-4):293-308
Ophiolites are widely distributed in the Central Eastern Desert (CED) of Egypt, occurring as clusters in the northern (NCEDO) and southern (SCEDO) segments. Mineralogical and geochemical data on the volcanic sections of Wizer (WZO) and Abu Meriewa (AMO) ophiolites as representatives of the NCEDO and SCEDO, respectively, are presented.The WZO volcanic sequence comprises massive metavolcanics of MORB-like compositions intruded by minor boninitic dykes and thrust over island-arc metavolcanic blocks in the mélange matrix. Such transitional MORB-IAT-boninitic magmatic affinities for the WZO metavolcanics suggest that they most likely formed in a protoarc–forearc setting. Chemical compositions of primary clinopyroxene and Cr-spinel relicts from the WZO volcanic section further confirm this interpretation. The compositional variability in the WZO volcanic sequence is comparable with the associated mantle rocks that vary from slightly depleted harzburgites to highly depleted harzburgites containing small dunite bodies, which are residues after MORB, IAT and boninite melt formation, respectively. Source characteristics of the different lava groups from the WZO indicate generation via partial melting of a MORB source which was progressively depleted by melt extraction and variably enriched by subduction zone fluids. MORB-like magma may have been derived from ~ 20% partial melting of an undepleted lherzolite source, leaving slightly depleted harzburgite as a residuum. The generation of island-arc magma can be accounted for by partial melting (~ 15%) of the latter harzburgitic mantle source, whereas boninites may have been derived from partial melting (~ 20%) of a more refractory mantle source previously depleted by melt extraction of MORB and IAT melts, leaving ultra-refractory dunite bodies as residuum.The AMO volcanic unit occurs as highly deformed pillowed metavolcanic rocks in a mélange matrix. They can be categorized geochemically into LREE-depleted (La/YbCN = 0.41–0.50) and LREE-enriched (La/YbCN = 4.7–4.9) lava types that show an island arc to MORB geochemical signature, respectively, signifying a back-arc basin setting. This is consistent, as well, with their mantle section. Source characteristics indicate depleted to slightly enriched mantle sources with overall slight subduction zone geochemical affinities as compared to the WZO.Generally, CED ophiolites show supra-subduction zone geochemical signature with prevalent island arc tholeiitic and minor boninitic affinities in the NCEDO and MORB/island-arc association in the SCEDO. Such differences in geochemical characteristics of the NCEDO and SCEDO, along with the abundance of mature island arc metavolcanics which are close in age (~ 750 Ma) to the ophiolitic rocks, general enrichment in HFSE of ophiolites from north to south, and lack of a crustal break and major shear zones, is best explained by a geotectonic model whereby the CED represents an arc–back-arc system above a southeast-dipping subduction zone.  相似文献   

3.
New U–Th–Ra, major and trace element, and Sr–Nd–Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc–continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc–continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated 208Pb/204Pb. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. 238U and 226Ra excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.  相似文献   

4.
The south Ardestan plutonic rocks constitute major outcrops in the central part of Iran’s Cenozoic magmatic belt and encompass a wide compositional spectrum from gabbro to granodiorite. U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating of zircon three granodiorites yielded ages of 24.6 ± 0.1, 24.6 ± 0.1, and 24.5 ± 0.1 Ma. For tonalitic rocks, internal Rb–Sr isochron ages (biotite, feldspars) indicate cooling ages of 20.4 ± 0.1, 20.5 ± 0.1, and 22.3 ± 0.1 Ma, which are slightly younger than the zircons’ ages. The limited variations in their Sr–Nd isotope ratios indicate derivation from an asthenospheric mantle source. A geodynamic model is presented in which late Oligocene–Miocene rollback of the Neotethyan subducting slab triggered asthenospheric upwelling and partial melting in the south Ardestan. These melts were subsequently modified through fractional crystallization and minor crustal contamination en-route to the surface. Plagioclase + orthopyroxene-dominated fractional crystallization accounts for differentiation of gabbro to gabbroic diorite, whereas fractionation of clinopyroxene, titanomagnetite, and orthopyroxene led to differentiation of gabbroic diorite to diorite. Amphibole fractionation at deeper levels led to the development of tonalites.  相似文献   

5.
The Late Cretaceous–Tertiary accretionary prism in Eastern Turkey includes several ophiolitic megablocks and/or tectonic slivers (Mehmetalan, Mollatopuz and Alabayir) within a mélange complex, mainly comprising harzburgite, dunite and cumulate-textured gabbro. The diabases, which are the main focus of this study, cut across the ophiolites as parallel and variably thick dyke-swarms. Geochemistry of the diabases reveals three distinct groups, including a) supra-subduction zone (SSZ) type, which is characterized by marked Nb-anomaly and normal mid-ocean ridge basalt (N-MORB) like HFSE distribution, b) enriched MORB (E-MORB) type, showing some degree of enrichment relative to N-MORB, c) oceanic-island basalt (OIB) type with characteristic hump-backed trace element patterns, coupled with fractionated REE distribution. Among these groups, SSZ- and E-MORB-type signatures are acquired from the Mehmetalan and Mollatopuz suites, whereas OIB-type characteristics are found in the Alabayir suite. The melting models indicate involvement of both depleted and enriched sources for the genesis of the studied dykes. The close spatial relationship, similar ages (based on Ar–Ar dating) and the presence of variable subduction component displayed by Mehmetalan and Mollatopuz suites may indicate melt generation in an intra-oceanic SSZ within the southern branch of Neotethys. In spite of the solely OIB-like character of the Alabayir suite, the similar age obtained from these dykes may suggest their formation in a similar SSZ setting. Alternatively, the Alabayir suite may have represented an oceanic island or seamount formed in an intra-plate setting with or without plume influence. We suggest that decompression melting triggered by slab roll-back mechanism during the closure of the southern branch of the Neotethys during the Late Cretaceous may have been the main process that led to generation of magmas of both depleted and enriched characteristics.  相似文献   

6.
The Timor Orogen represents one of the youngest arc–continent collisions exposed on the Earth. It has the potential to provide some of the key parameters about how this style of orogeny evolves. However, the metamorphic age of the highest-grade rocks formed in the collision remains controversial. Using U–Th–Pb dating of monazite from amphibolite-grade sillimanite and garnet-bearing schists we show the peak metamorphism occurred at 5.5–4.7 Ma. The young age of the monazite and the presence of significant amounts of common Pb required the development of a new protocol to simultaneously account for the 230Th disequilibrium and the 207Pb common Pb correction. The new estimate of metamorphic age is consistent with the estimates based on plate reconstructions for the initiation of arc–continent collision in East Timor. The metamorphic event is a result of this collision.  相似文献   

7.
The Zapug–Duobuza magmatic arc (ZDMA), located along the southern edge of the south Qiangtang terrane in western Tibet, extends east–west for ~ 400 km. Small scattered granite and porphyry intrusions crop out in the ZDMA, but a large amount of granite may be buried by Late Cretaceous to Paleogene thrusting. Two stages of magmatism have been identified, at 170–150 Ma and 130–110 Ma. The widely distributed Middle–Late Jurassic granite intrusions in the ZDMA exhibit SrNd isotopic characteristics similar to those of ore-bearing porphyries in the Duolong giant CuAu deposit, and their εHf(t) values mostly overlap those of other porphyry CuMo deposits in the ZDMA and the Gangdese zone. The SrNdHf isotopic geochemistry suggests variable contributions of mantle and Qiangtang crustal sources, and indicates the presence of two new ore districts with potentials for CuAu, Fe, and PbZn ores, located in the Jiacuo–Liqunshan and Larelaxin–Caima areas. Except for the Duolong ore-forming porphyries, which show significant contributions of mantle components intruded into an accretionary mélange setting, the Early Cretaceous granites in other areas of the belt are of mostly crustal origin, from sources in Qiangtang felsic basement and Permo-Carboniferous strata, indicating the weak ore-forming potential of skarn-type Fe and PbZn deposits. The ephemeral but deep Bangong Co–Nujiang ocean in the Early Jurassic evolved into a shallow compressional marine basin in the Middle–Late Jurassic, possibly transitioning to northward flat subduction of oceanic crust at this time. The subducted slab broke off in the Early Cretaceous, initiating a peak in arc magmatism and metallogenesis at 125–110 Ma.  相似文献   

8.
New structural, petrological, chemical, isotope, and paleomagnetic data have provided clues to the Late Riphean–Paleozoic history of the Uda–Vitim island arc system (UVIAS) in the Transbaikalian sector of the Paleoasian ocean, as part of the Transbaikalian zone of Paleozoids. The island arc system consists of three units corresponding to main evolution stages: (i) Upper Riphean (Late Baikalian), (ii) Vendian–Lower Paleozoic (Caledonian), and (iii) Middle–Upper Paleozoic (Hercynian). The earliest stage produced the base of the system composed of Late Riphean ophiolite (971–892 Ma, U-Pb) and volcanic (837–789 Ma, U-Pb) and sedimentary rocks (hemipelagic siliceous sediments and dolerite sills) which represent the Barguzin–Vitim oceanic basin and the Kelyana island arc. The main event of the second stage was the formation of the large UVIAS structure (over 150,000 km2) which comprised the Transbaikalian oceanic basin, the forearc and backarc basins, and the volcanic arc itself, and consisted of many volcanic-tectonic units exceeding 100 km2 in area (Eravna, Oldynda, Abaga, etc.). Lithology, stratigraphy, major–element compositions, and isotope ages of Vendian–Cambrian volcanic rocks and associated sediments indicate strong differentiation of calc-alkaline series and the origin of the island arc system upon oceanic crust, in a setting similar to that of the today’s Kuriles–Kamchatka island arc system. The Middle–Upper Paleozoic stage completed the long UVIAS history and left its imprint in sedimentary and volcanic rocks in superposed trough basins. The rocks were studied in terms of their biostratigraphic and isotope age constraints, as well as major- and trace-element compositions, and were interpreted as products of weathering and tectonic-magmatic rework of the UVIAS units.  相似文献   

9.
Doklady Earth Sciences - Particles of tantalo–niobate of the ferrotantalite-manganotantalite series are discovered for the first time in two lunar regolith fragments delivered by the...  相似文献   

10.
Arc–continent collision is a key process of continental growth through accretion of newly grown magmatic arc crust to older continental margin. We present 2D petrological–thermo-mechanical models of arc–continent collision and investigate geodynamic regimes of this process. The model includes spontaneous slab bending, dehydration of subducted crust, aqueous fluid transport, partial melting of the crustal and mantle rocks and magmatic crustal growth stemming from melt extraction processes. Results point to two end-member types of subsequent arc–continent collisional orogens: (I) orogens with remnants of accretion prism, detached fragments of the overriding plate and magmatic rocks formed from molten subducted sediments; and (II) orogens mainly consisting of the closed back-arc basin suture, detached fragments of the overriding plate with leftovers of the accretion prism and quasi insignificant amount of sediment-derived magmatic rocks. Transitional orogens between these two endmembers include both the suture of the collapsed back-arc basin and variable amounts of magmatic production. The orogenic variability mainly reflects the age of the subducting oceanic plate. Older, therefore colder and denser oceanic plates trigger subduction retreat, which in turn triggers necking of the overriding plate and opening of a backarc basin in which new oceanic lithosphere is formed from voluminous decompression melting of the rising hot asthenosphere. In this case, subducted sediments are not heated enough to melt and generate magmatic plumes. On the other hand, young and less dense slabs do not retreat, which hampers opening of a backarc basin in the overriding plate while subducted sediments may reach their melting temperature and develop trans-lithospheric plumes. We have also investigated the influences of convergence rate and volcanic/plutonic rocks' ratio in newly forming lithosphere. The predicted gross-scale orogenic structures find similarities with some natural orogens, in particular with deeply eroded orogens such as the Variscides in the Bohemian Massif.  相似文献   

11.
The Tabar–Lihir–Tanga–Feni (TLTF) islands of Papua New Guinea mainly comprise high-K calc-alkaline and silica undersaturated alkaline rocks that have geochemical features typical for subduction-related magmatism. Numerous sedimentary, mafic, and ultramafic xenoliths recovered from Tubaf seamount, located on the flank of Lihir Island, provide a unique opportunity to study the elemental and isotopic composition of the crust and mantle wedge beneath the arc and to evaluate their relationships to the arc magmatism in the region. The sedimentary and mafic xenoliths show that the crust under the islands is composed of sedimentary sequences and oceanic crust with Pacific affinity. A majority of the ultramafic xenoliths contain features indicating wide spread metasomatism in the mantle wedge under the TLTF arc. Leaching experiments reveal that the metasomatized ultramafic xenoliths contain discrete labile phases that can account for up to 50% or more of elements such as Cu, Zn, Rb, U, Pb, and light REE (rare-earth elements), most likely introduced in the xenoliths via hydrous fluids released from a subducted slab. The leaching experiments demonstrated that the light REE enrichment pattern can be more or less removed from the metasomatized xenoliths and the residual phases exhibit REE patterns that range from flat to light REE depleted. Sr–Nd isotopic data for the ultramafic residues show a coupled behavior of increasing 87Sr/86Sr with decreasing 143Nd/144Nd ratios. The labile phases in the ultramafic xenoliths, represented by the leachates, show decoupling between Sr and Nd with distinctly more radiogenic 87Sr/86Sr than the residues. Both leachates and residues exhibit very wide range in their Pb isotopic compositions, indicating the involvement of three components in the mantle wedge under the TLTF islands. Two of the components can be identified as Pacific Oceanic mantle and Pacific sediments. Some of the ultramafic samples and clinopyroxene separates, however, exhibit relatively low 206Pb/204Pb at elevated 207Pb/204Pb suggesting that the third component is either Indian Ocean-type mantle or Australian subcontinental lithospheric mantle. Geochemical data from the ultramafic xenoliths indicate that although the mantle wedge in the area was extensively metasomatized, it did not significantly contribute to the isotopic and incompatible trace element compositions of TLTF lavas. Compared to the mantle samples, the TLTF lavas have very restricted Pb isotopic compositions that lie within the Pacific MORB range, indicating that magma compositions were dominated by melts released from a stalled subducted slab with Pacific MORB affinity. Interaction of slab melts with depleted peridotitic component in the mantle wedge, followed by crystal fractionation most likely generated the geochemical characteristics of the lavas in the area. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
《International Geology Review》2012,54(12):1523-1540
The Sanandaj–Sirjan Zone (SSZ) of western Iran is characterized by numerous granitoids of mainly calc-alkaline affinities. Several leucogranite and monzonite bodies crop out in the eastern Sanandaj. Whole-rock Rb–Sr isochrons demonstrate that the Mobarak Abad monzonite (MAM) formed in two phases at 185 and 131 Ma. Low 87Sr/86Sr(i) (i represents initial) and high 143Nd/144Nd(i) ratios, resulting in positive ?t Nd, imply that the source magma originated from a depleted mantle; large ion lithophile element (LILE) and light rare earth element (LREE) enrichments imply that slab fluid was involved in the evolution of the parent magma. Geochemical characteristics of the MAM rocks show an affinity with I- and A-type granites, and the positive values of ?t Nd (+2 to +6), confirm that the MAM represents juvenile granite. Therefore, the MAM rocks are different from Himalayan, Hercynian, and Caledonian granites. Based on the geology of granitic host rocks that form the protoliths of metamorphic rocks, it is likely that the mafic part of the MAM formed in an island arc setting on Neo-Tethyan oceanic crust during Early to Middle Jurassic time. Subsequent collision of the island arc with the western part of the SSZ occurred in the Late Jurassic to Early Cretaceous. Metamorphism, accompanied by partial melting, occurred during collision. Finally, leucogranite magmas of the young Mobarak Abad dikes and the Suffi Abad body were generated in this collision zone. This new model suggests a Late Jurassic–Early Cretaceous arc–continental collision before final closing of the Neo-Tethys.  相似文献   

13.
The Portneuf–Mauricie Domain (PMD), located in the south-central part of the Grenville province, contains Mesoproterozoic Ni–Cu ± platinum-group element (PGE) prospects hosted in a variety of plutonic intrusions (layered, with simple structures, or zoned) and emplaced in a mature island arc setting. A two-stage model is envisaged to explain the formation of magmatic sulfides. An early loss of a small amount of sulfides in the conduits of primitive, hydrous mantle-derived melts under high fO2, resulted in depletion of the magmas in chalcophile and precious metals (Cu/Pd ratios vary from initial mantle values up to 1.6 × 106). Then, nearer the mineralized zones, the magmas interacted with sulfide-bearing country rocks, resulting in felsification of the magmas, assimilation of crustal sulfur (δ 34S values up to +5.5‰), and the formation of an immiscible sulfide liquid. Liquid-sulfide formation was followed by variable interactions between the silicate and sulfide magmas, which were responsible for the enrichment of sulfides in Ni, Cu, and, locally, PGE. Indeed, low R factors are found for prospects hosted in intrusions with a simple internal structure and in layered intrusions whereas high R factors are found for prospects hosted in zoned intrusions. Finally, sulfide melt may have been partly incorporated into later pulses of magma and injected into shallow magma chambers to form the PMD prospects. The PMD prospects share common characteristics with other well-known deposits (Aguablanca, Vammala, Stormyrplunen, and deposits in Alaskan/Ural-type intrusions), attesting to the Ni, Cu, and PGE potential of deposits associated with subduction-zone settings.  相似文献   

14.
HP/UHP and LT metamorphic units that commonly occur in the inner parts of mountain belts result from the subduction of continental and oceanic material, most often exhumed prior to continental collision. The prograde pressure–temperature history of HP–UHP rocks strongly depends on the convergence rate and on the subduction zone geometry. The maximum pressure recorded provides a proxy for the depth of shearing off and stacking of HP metamorphic nappes. A 2-D thermal model of continental subduction at lithospheric scale is used to compute the length and pressure peak of detached HP metamorphic units as a function of the slab dip angle and the convergence rate. Model results are applied to the metamorphic nappe pile of the inner Alps. A mean convergence rate of 1 cm/year during the subduction of the Briançonnais terrane is indicated by the paleogeographic reconstructions between 46 and 38 Ma. On this basis, the available petrological data and lengths of metamorphic units are used to compute the variations of the slab dip angle. The slab dip angle is shown to increase, from the northeast to the southwest, along the Alpine arc with estimated values of 20° for Suretta, 30–45° for Monte Rosa and Gran Paradiso, and 60° for Dora Maira. From Eocene to Oligocene times, the increase in slab dip angle is controlled by changes of buoyancy, due to the spatial configuration of the Valaisan trough and the incoming of crustal material within the subduction zone.  相似文献   

15.
The Uchi subprovince of the Archean Superior Province is a series of greenstone belts extending 600 km east–west along the southern margin of the North Caribou Terrane protocontinent. The 2.7 Ga Confederation tectonostratigraphic assemblage of the Birch–Uchi greenstone belt, northwest Ontario, is dominated by volcanic suites of mafic, intermediate and felsic composition. Tholeiitic basalts range compositionally from Mg# 59–26 evolving continuously to greater REE contents (La=2–19 ppm; Th/Lapm˜1), with small negative Nb anomalies. Primitive tholeiites are similar to modern intraoceanic arc basalts, whereas evolved members extend to greater concentrations of Ti, Zr, V, Sc, and Y, and lower Ti/Zr, but higher Ti/Sc and Ti/V ratios characteristic of back arc basalts. Calc-alkaline basalts to dacites are characterised by more fractionated REE (La/Ybn=1–8), high Th/Nbpm ratios and deeper negative Nb anomalies; they plot with modern oceanic arc basalts and some may qualify as high magnesium andesites. The two suites are interpreted as a paired arc–back arc sequence. A third group of Nb-enriched basalts (NEB; Nb=9–18 ppm) extend to extremely high TiO2, Ta, P2O5, Sc and V contents, with strongly fractionated REE and ratios of Nb/Ta and Zr/Hf greater than primitive mantle values whereas Zr/Sm ratios are lower. The most abundant rhyolitic suite has extremely enriched but flat trace element patterns and is interpreted as strongly fractionated tholeiitic basalt liquids. A second group are compositionally similar to Cenozoic adakites and Archean high-Al, high-La/Ybn tonalites; they possess Yb ≤ 0.4 ppm, Y ≤ 6 ppm and Sc ≤ 8 ppm, with La/Ybn of 19–30 and Zr/Sm of 50–59. They are interpreted as melts of ocean lithosphere basaltic crust in a hot shallow subduction zone. Adakites are associated with NEB in Cenozoic arcs where there is shallow subduction of young and/or hot ocean lithosphere, often with oblique subduction. Slab melt adakites erupt, or metasomatise sub-arc mantle peridotite to generate an HFSE-enriched source that subsequently melts during induced mantle convection. The Archean adakite–NEB association erupted during development of the tholeiitic to calc-alkaline arc and its associated back arc. Their coexistence in the Confederation assemblage of the Birch–Uchi greenstone belt implies convergent margin processes similar to those in Cenozoic arcs. Received: 2 June 1999 / Accepted: 29 December 1999  相似文献   

16.
17.
The close intergrowth of two native alloys of the compositions Ni0.59Cu0.24Al0.15Fe0.01Mn0.01 and Pd0.55Pt0.36Rh0.09 with a size of 10 μm has been discovered in the regolith from the Mare Crisium. A conclusion on its exhalative origin is made.  相似文献   

18.
Natural Hazards - Tsunami coastal hazard is modeled along the US East Coast (USEC), at a coarse regional (450 m) resolution, from coseismic sources located in the Açores Convergence Zone (ACZ)...  相似文献   

19.
We suggest a more rigorous approach to paleogeodynamic reconstructions of the Sayan-Baikal folded area proceeding from update views of the origin and evolution of island arcs and back-arc basins. Modern island arcs and attendant back-arc basins form mainly by trench rollback caused by progressive subduction of negatively buoyant thick and cold oceanic slabs. Slab stagnation upsets the dynamic equilibrium in the subduction system, which accelerates the rollback. As a result, a continental volcanic arc transforms into an island arc, with oceanic crust production in the back-arc basin behind it. As subduction progresses, the island arc and the back-arc basin may deform, and fold-thrust structures, with the involved back-arc basin and island arc complexes, may accrete to the continent (accretion and collision) without participation of large colliding blocks. When applied to the Sayan–Baikal area, the model predicts that the Riphean and Vendian–Early Paleozoic back-arc basins were more active agents in the regional geologic history than it was thought before. They were deposition areas of sedimentary and volcanosedimentary complexes and then became the scene of collision and accretion events, including folding, metamorphism, and plutonism.  相似文献   

20.
A suite of 27 oils from the Qinjiatun–Qikeshu oilfields in the Lishu Fault Depression of the Songliao Basin was analyzed using whole oil gas chromatography. In combination with the relative distribution of C27, C28, and C29 regular steranes, detailed geochemical analyses of light hydrocarbons in oil samples revealed crude oils characterized by the dual input of lower aquatic organisms and higher terrestrial plants. Several light hydrocarbon indicators suggest that the liquid hydrocarbons have maturities equivalent to vitrinite reflectances of around 0.78%–0.93%. This is consistent with the maturity determination of steranes C29 20S/(20S + 20R) and C29 ααβ/(ααα + αββ). Crude oils derived from the two distinct oilfields likely both have source rocks deposited in a lacustrine environment based on light hydrocarbon parameters and on higher molecular weight hydrocarbon parameters. The results show that light hydrocarbon data in crude oils can provide important information for understanding the geochemical characteristics of the Qinjiatun–Qikeshu oils during geologic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号