首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i = 87.7129 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.  相似文献   

2.
We consider the population of black widow pulsars (BWPs). The large majority of these are members of globular clusters. For minimum companion masses  ≲0.1 M  , adiabatic evolution and consequent mass loss under gravitational radiation appear to provide a coherent explanation of all observable properties. We suggest that the group of BWPs with minimum companion masses  ≳0.1 M  are systems relaxing to equilibrium after a relatively recent capture event. We point out that all binary millisecond pulsars (MSPs) with orbital periods   P ≲ 10  h are BWPs (our line of sight allows us to see the eclipses in 10 out of 16 cases). This implies that recycled MSPs emit either in a wide fan beam or a pencil beam close to the spin plane. Simple evolutionary ideas favour a fan beam.  相似文献   

3.
The relevance of orbital eccentricity in the detection of gravitational radiation from (steady state) binary stars is emphasized. Computationally effective (fast and accurate) tools for constructing gravitational wave templates from binary stars with any orbital eccentricity are introduced including tight estimation criteria of the pertinent truncation and approximation errors.  相似文献   

4.
武曙光  张杨  付正文 《天文学报》2012,53(3):185-196
大质量双黑洞OJ287是一个强引力辐射源.为了探测其引力波信号,需要知道波形,而这主要是由轨道运动所决定.为此,从广义相对论3.5阶后牛顿近似的运动方程出发对OJ287的轨道进行仔细研究,取大黑洞位置固定作为近似,给出了后牛顿近似下3.5阶的次黑洞轨道解,比他人2.5阶的工作高了一阶.次黑洞撞击吸积盘面到光学爆发存在时间延迟,这对于确定轨道参数有很大影响.利用径向距离与爆发时间关系的线性模型,对最近7次爆发时刻的观测值拟合,给出了更精确的OJ287双黑洞的轨道参数及其运动轨道.分析了计算结果,研究运动特征,并且发现了两个新性质:次黑洞进动在初期增加,在晚期接近并和时,进动达到最大值,然后减小并越过0而趋于负值.尚不能确定晚期的这个行为是否由3.5阶近似不够准确所造成.运动方程中耗散性的辐射项,后牛顿2.5阶和3.5阶的系数具有相反的符号.这意味着3.5阶项反而是从外界吸收能量.但2.5阶与3.5阶之和仍然是向外辐射引力波的,体系能量变化率为负.这个工作的计算结果可以用来更精确地计算OJ287的引力辐射.  相似文献   

5.
Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation.However,a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer.Such stable mass transfer between two helium white dwarfs(He WDs) provides one channel for the production of AM CVn binary stars.In previous calculations of double He WD progenitors,the accreting He WD was treated as a point mass.We have computed the evolution of 16 double He WD models in order to investigate the consequences of treating the evolution of both components in detail.We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach.By comparing with observed periods and mass ratios,we redetermine masses of eight known AM CVn stars by our double He WDs channel,i.e.HM Cnc,AM CVn,V406 Hya,J0926,J1240,GP Com,Gaia14 aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240,GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double He WD channel.The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna(LISA) project.  相似文献   

6.
The restricted three-body problem in Schwarzschild's gravitational field is analyzed. The existen- ce of the equilibrium points in the orbital plane is discussed and the corresponding positions are established. There are three collinear libration points, and, if they exist, two triangular libration points (situated in the orbital plane of the primaries). If triangular points exist, they may not form equilateral triangles; the triangles are isosceles for equal masses of the primaries, and scalene else.  相似文献   

7.
An analysis of periodic components of flux variability was carried out based on the long-term monitoring of the nuclei of active galaxies 3C454.3, 1633+382, and 3C120, performed in the Crimean Astrophysical Observatory from 1985 to 2008 at 22.2 and 36.8 GHz. Long-period components of the variability (12–14 yrs) were detected and interpreted in terms of the precessional motion of the central body in binary systems. Short-period components (1.5–3 yrs) related to the orbital periods for the motions of the central supermassive black holes were also detected. We concluded that the brightest active galaxies observed as nonstationary sources in a wide range of wavelengths are binary systems of supermassive black holes at the stage of evolution close to coalescence. For the supposed binary black-hole systems, the masses of the central objects and their companions, the orbital radii of the companions, and the coalescence times were determined. The ratios of the masses in the binary systems in all cases proved to be less than ten, pointing to a strong gravitational effect of the companion on the central black hole. The velocities of the central body motion proved to be high, approximately 1000 km/s. This fact should be accounted for in the calculations of the rate of accretion onto the central body. The orbital radii of the companions fall into a narrow range between 4 × 1016 cm and 6 × 1016 cm, demonstrating a strong dependence of the masses of the binary systems on the orbital sizes and the energy loss for the gravitational radiation. Within the orbit of the companion during its motion through the accretion disk, a high temperature of surrounding gas is achieved. The high density of the medium, 109–1010 cm?3, combined with the magnetic field and shock waves propagating in the accretion disk, develop the conditions for powerful energy release in the directed jets.  相似文献   

8.
A study of galaxy mergers, on the basis of the collisional theory, using galaxy models without halos and considering the evolution of the proginator galaxies only from a time when the gravitational interaction between them is physically significant, indicates that most of the mergers are affected in 2 to 3 orbital periods for progenitors of comparable mass: shorter and longer time-scales being underabundant. These results have a bearing on the evolution of binary galaxies; indicating that once the relative orbit of a binary is circularized, the components will merge during the subsequent orbit or the next one (in a time-scale ~ 108 years). These results are also indicative of the fact that binary evolution is very likely to cause a gradual evolution of the fundamental plane occupied by paired ellipticals from that of isolated ellipticals. After the merger, the remnant is very likely to define a fundamental plane with a slightly different slope.  相似文献   

9.
We study the inspiral of double black holes, with masses in the Laser Interferometer Space Antenna ( LISA ) window of detectability, orbiting inside a massive circumnuclear, rotationally supported gaseous disc. Using high-resolution smoothed particle hydrodynamics simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until they form a close binary. We find that in the early sinking the black holes lose memory of their initial orbital eccentricity if they corotate with the gaseous disc. As a consequence, the massive black holes bind forming a binary with a low eccentricity, consistent with zero within our numerical resolution limit. The cause of circularization resides in the rotation present in the gaseous background where dynamical friction operates. Circularization may hinder gravitational waves from taking over and leading the binary to coalescence. In the case of counter-rotating orbits, the initial eccentricity (if present) does not decrease, and the black holes may bind forming an eccentric binary. When dynamical friction has subsided, for equal mass black holes and regardless their initial eccentricity, angular momentum loss, driven by the gravitational torque exerted on the binary by surrounding gas, is nevertheless observable down to the smallest scale probed (≃1 pc). In the case of unequal masses, dynamical friction remains efficient down to our resolution limit, and there is no sign of formation of any ellipsoidal gas distribution that may further harden the binary. During inspiral, gravitational capture of gas by the black holes occurs mainly along circular orbits; eccentric orbits imply high relative velocities and weak gravitational focusing. Thus, the active galactic nucleus activity may be excited during the black hole pairing process and double active nuclei may form when circularization is completed, on distance scales of tens of parsecs.  相似文献   

10.
We discuss the possibility to obtain an electromagnetic emission accompanying the gravitational waves emitted in the coalescence of a compact binary system. Motivated by the existence of black hole configurations with open magnetic field lines along the rotation axis, we consider a magnetic dipole in the system, the evolution of which leads to (i) electromagnetic radiation, and (ii) a contribution to the gravitational radiation, the luminosity of both being evaluated. Starting from the observations on magnetars, we impose upper limits for both the electromagnetic emission and the contribution of the magnetic dipole to the gravitational wave emission. Adopting this model for the evolution of neutron star binaries leading to short gamma ray bursts, we compare the correction originated by the electromagnetic field to the gravitational waves emission, finding that they are comparable for particular values of the magnetic field and of the orbital radius of the binary system. Finally we calculate the electromagnetic and gravitational wave energy outputs which result comparable for some values of magnetic field and radius.  相似文献   

11.
The masses of a pair of stars in the visual binary system have been estimated. The angle between the orbital plane of the stars and the plane of the sky has been taken into account. Inclination of the major axes of the orbits of the stars with the line of interaction between the orbital plane and the plane of the sky has also been considered. These two inclinations are also computed in terms of the observed quantities. Major and minor axes of actual orbits of the stars are determined.  相似文献   

12.
极端质量比旋进系统是空间引力波探测器最重要的波源之一。对引力波的探测需要高精度波形模版。当前主流的极端质量比旋进系统引力波计算模型中,人们一般将小质量天体当作试验粒子进行计算,而忽略了其结构及自身引力对背景引力场的影响。利用Mathisson-Papapetrou-Dixon方程研究延展体在弯曲时空中的运动,以及小天体自旋和质量多极矩对引力波信号识别产生的影响。结果表明,质量比在10?6-10?4范围的旋进系统,其自旋达到很大时,自旋对延展体的轨道运动有不可忽略的影响;在质量比10?4-10?2区间内,需要考虑中心黑洞潮汐作用导致的白矮星形变;在质量比大于10?4,且白矮星自旋很大时,其自旋产生的形变会对小天体轨道运动产生不可忽略的影响。大质量黑洞潮汐作用导致的恒星级黑洞或中子星产生的形变可以忽略,中子星和黑洞的自旋会对轨道运动产生不可忽略的影响,而自旋产生的四极矩对轨道运动不产生影响。  相似文献   

13.
Considering a sample of 20 eclipsing binary systems with δ Scuti type primaries, we discovered that there is a possible relation among the pulsation periods of the primaries and the orbital periods of the systems. According to this empirical relation, the longer the orbital period of a binary, the longer the pulsation period of its pulsating primary. Among the sample, the masses of the secondaries and the separations between the components are known for eight systems for which a  log  P puls  versus log  F (the gravitational pull exerted per gram of the matter on the surface of the primaries by the secondaries) diagram also verifies such an interrelation between the periods. So, as the gravitational force applied by the secondary component onto the pulsating primary increases, its pulsation period decreases. The detailed physics underlying this empirical relation between the periods needs further confirmation, especially theoretically. However, one must also consider the fact that the present sample does not contain a sufficiently large sample of longer period  ( P > 5 d)  binaries.  相似文献   

14.
引力波理论和实验的新进展   总被引:3,自引:0,他引:3  
引力波的存在是爱因斯坦在广义相对论理论中提出的一个重要预言.由于目前技术水平的限制,无法在实验室产生足以被探测到的引力波,因此宇宙中大量的大质量剧烈活动的天体成为科学家研究引力波的首选,从而诞生了引力波天文学.引力波探测将开启研究宇宙的新窗口,是继电磁辐射、宇宙线和中微子探测后探索宇宙奥秘的又一重要手段,对天文学研究有着极为重要的意义.新一代应用了高灵敏度的迈克耳逊干涉仪装置的长基线引力波探测仪正在建造中.该综述从引力波理论出发,阐述了目前研究较多的可探测引力波源,给出了目前观测上的最新进展,并展望了今后的发展前景.  相似文献   

15.
By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

16.
During the in-spiral stage of a compact binary, a wind bubble could be blown into the interstellar medium, if electromagnetic radiation due to the binary orbital motion is strong enough. Therefore, shortduration gamma-ray bursts(SGRBs) due to double neutron star mergers would in principle happen in a wind bubble environment, which can influence the propagation of the SGRB jet and consequent afterglow emission. By calculating the dynamics and synchrotron radiation of the jet-driven external shock, we reveal that an abrupt jump could appear in the afterglow light curves of SGRBs and the observational time of the jump is dependent on the viewing angle. This light curve jump provides an observational signature to constrain the radius of the wind bubble and thus the power of the electromagnetic radiation of the binary,by combining with gravitational wave detection.  相似文献   

17.
We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4-3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10−12 s s−1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4-3658 will help us to resolve this.  相似文献   

18.
We study tidal synchronization and orbit circularization in a minimal model that takes into account only the essential ingredients of tidal deformation and dissipation in the secondary body. In previous work we introduced the model (Escribano et al. in Phys. Rev. E, 78:036216, 2008); here we investigate in depth the complex dynamics that can arise from this simplest model of tidal synchronization and orbit circularization. We model an extended secondary body of mass m by two point masses of mass m/2 connected with a damped spring. This composite body moves in the gravitational field of a primary of mass Mm located at the origin. In this simplest case oscillation and rotation of the secondary are assumed to take place in the plane of the Keplerian orbit. The gravitational interactions of both point masses with the primary are taken into account, but that between the point masses is neglected. We perform a Taylor expansion on the exact equations of motion to isolate and identify the different effects of tidal interactions. We compare both sets of equations and study the applicability of the approximations, in the presence of chaos. We introduce the resonance function as a resource to identify resonant states. The approximate equations of motion can account for both synchronization into the 1:1 spin-orbit resonance and the circularization of the orbit as the only true asymptotic attractors, together with the existence of relatively long-lived metastable orbits with the secondary in p:q (p and q being co-prime integers) synchronous rotation.  相似文献   

19.
We have investigated the influence of the r-mode instability on hypercritically accreting neutron stars in close binary systems during their common envelope phases, based on the scenario proposed by Brown et al. On the one hand, neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency.
The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning up of the star, the final rotational frequency of which is well below the mass-shedding limit, in fact typically as low as 10 per cent of that of the mass-shedding state. On a very short time-scale the rotational frequency tends to approach a certain constant value and saturates there, as long as the amount of accreted mass does not exceed a certain limit to collapse to a black hole. This implies that a similar mechanism of gravitational radiation to that in the so-called 'Wagoner star' may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by gravitational wave detectors such as LIGO II.  相似文献   

20.
A list of selected binary stars is presented that have been observed for several decades using a 26-inch refractor at the Pulkovo Observatory. These stars are at a distance from 3.5 to 25 pc from the Sun. They belong to spectral classes F, G, K, and M. Their masses range from 0.3 to 1.5 solar masses. We have analyzed them as possible parent stars for exoplanets taking into account the physical characteristics of these stars. In view of dynamic parameters and orbital elements that we have obtained by Pulkovo observations, ephemerides of positions for the coming years are calculated. The boundaries of the habitable zones around these stars are calculated. The astrometric signal that depends on the gravitational influence of hypothetical planets is estimated. Space telescopes for astrometric observations with microsecond accuracy can be used to detect Earth-like planets near the closest stars of this program. This paper presents an overview of astrometric programs of searches for exoplanets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号