首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Widespread evidence for ultrahigh‐pressure (UHP) metamorphism is reported in the Dulan eclogite‐bearing terrane, the North Qaidam–Altun HP–UHP belt, northern Tibet. This includes: (1) coesite and associated UHP mineral inclusions in zircon separates from paragneiss and eclogite (identified by laser Raman spectroscopy); (2) inclusions of quartz pseudomorphs after coesite and polycrystalline K‐feldspar + quartz in eclogitic garnet and omphacite; and (3) densely oriented SiO2 lamellae in omphacitic clinopyroxene. These lines of evidence demonstrate that the Dulan region is a UHP metamorphic terrane. In the North Dulan Belt (NDB), eclogites are characterized by the peak assemblage Grt + Omp + Rt + Phn + Coe (pseudomorph) and retrograde symplectites of Cpx + Ab and Hbl + Pl. The peak conditions of the NDB eclogites are P = 2.9–3.2 GPa, and T = 631–687 °C; the eclogite shows a near‐isothermal decompression P–T path suggesting a fast exhumation. In the South Dulan Belt (SDB), three metamorphic stages are recognized in eclogites: (1) a peak eclogite facies stage with the assemblage Grt + Omp + Ky + Rt + Phn at P = 2.9–3.3 GPa and T = 729–746 °C; (2) a high‐pressure granulite facies stage with Grt + Cpx (Jd < 30) + Pl (An24–29) + Scp at P = 1.9–2.0 GPa, T = 873–948 °C; and (3) an amphibolite facies stage with the assemblage Hbl + Pl + Ep/Czo at P = 0.7–0.9 GPa and T = 660–695 °C. The clockwise P–T path of the SDB eclogites is different from the near‐isothermal decompression P–T path from the NDB eclogites, which suggests that the SDB was exhumed to a stable crustal depth at a slower rate. In essence these two sub‐belts formed in different tectonic settings; they both subducted to mantle depths of around 100 km, but were exhumed to the Earth's surface separately along different paths. This UHP terrane plays an important role in understanding continental collision in north‐western China.  相似文献   

2.
柴北缘超高压带中锡铁山榴辉岩的变质时代   总被引:2,自引:8,他引:2  
宋述光  张聪  李献华  张立飞 《岩石学报》2011,27(4):1191-1197
锡铁山地体位于柴北缘超高压变质带的中部, 是柴北缘超高压变质带的重要组成部分。该地体由花岗质片麻岩、泥质片麻岩和相对较少的榴辉岩透镜体组成。大部分榴辉岩都经历了不同程度的后生合晶和角闪岩相退化变质改造。虽然近年来进行了大量的锆石U-Pb年代学研究,但榴辉岩相高压-超高压变质的时代一直存在争议,并且以前对锡铁山榴辉岩相变质时代的认识一直与相邻的绿梁山、鱼卡和其东部的都兰等地区的超高压变质年龄有明显的冲突。本文通过锡铁山榴辉岩锆石U-Pb年代学的研究,获得榴辉岩相变质锆石的206Pb/238U加权平均年龄为433±3Ma,与鱼卡地区榴辉岩的形成年龄一致,代表大陆俯冲时期的高压-超高压变质年龄。该研究对进一步了解锡铁山榴辉岩地体的变质演化和大陆地壳深俯冲有重要意义。  相似文献   

3.
Palaeozoic rapakivi granites occur in the western segment of the China Central Orogenic System. Exhibiting typical rapakivi texture, these granites contain magmatic microgranular enclaves of intermediate compositions. SHRIMP zircon U–Pb ages for the granites and enclaves are 433 ± 5 Ma and 433 ± 3 Ma, respectively. The rapakivi granites are magnesian to ferroan, calc-alkalic to alkalic, and are characterized by high FeOt/(FeOt + MgO) (0.74–0.91) and Ga/Al ratios, and SiO2, Na2O + K2O and rare earth element (apart from Eu) contents, but low CaO, Ba, and Sr contents. These are typical A-type granite geochemical features. The granites and enclaves exhibit a uniform decrease in TiO2, CaO, Na2O, K2O, FeO, and MgO with increasing SiO2, and both lithologies have similar trace element patterns. Whole-rock ?Nd(t) values vary from??9.2 to??8.7 for the granites and from??9.0 to??8.4 for the enclaves, but zircon ?Hf(t) values vary more widely from??5.8 to??0.2 and??4.6 to +5.1, respectively. Our data suggest that the granites and enclaves have crystallized from different magmas. The granites appear to have been derived from old continental crust, whereas the enclaves required a source having a juvenile component. The spherical shape and undeformed nature of the granites and their geochemical characteristics, coupled with the (ultra)-high pressure metamorphism and evolution of Palaeozoic granitoid magmatism in the North Qaidam orogen, indicate that the rapakivi granites were generated in a post-collisional setting. These rocks are therefore an example of Palaeozoic rapakivi granites emplaced in a post-collisional, extensional orogenic setting.  相似文献   

4.
柴北缘大陆深俯冲板片折返过程中的深熔作用研究   总被引:1,自引:2,他引:1  
柴北缘锡铁山地区长英质(花岗)片麻岩普遍经历了不同程度的部分熔融作用,常见新生的花岗质浅色体呈层状、脉状或网络状分布于长英质片麻岩中,并显示出混合岩化的特征。岩相学观察结果显示长英质片麻岩保留了关键的深熔作用显微结构证据:(1)石榴石内部发育有钾长石、石英和斜长石组成的矿物包裹体;(2)长石颗粒边界出现由石英+钾长石±斜长石±白云母组成的楔形矿物集合体;(3)云母颗粒边界发育尖锐的、不规则的微斜长石,而且云母边界溶蚀明显,形成锯齿状不规则的边界;(4)石英、斜长石或钾长石颗粒边界发育圆珠状(stringofbeads)结构,而且颗粒边界或三联点中尖锐状微斜长石与周围矿物的形成较小的二面角。阴极发光图像和锆石U-Pb定年结果表明花岗质浅色体中的锆石具有明显的核、幔、边三层结构,而且具有明显不同的年龄结果。发光较强的继承性锆石岩浆核部的206Pb/238U年龄约为~910Ma,而且具有高的Th/U比值;弱发光的变质锆石幔的206Pb/238U年龄结果约为~450Ma。新生的锆石增生边中等程度发光,并发育震荡环带和较低的Th/U比值,与世界典型地区混合岩中深熔锆石的特征十分相似,其206Pb/238U年龄结果为432±3Ma。野外关系、显微结构特征和年代学的研究结果显示柴北缘锡铁山地区花岗质浅色体可能是其寄主岩石长英质片麻岩在折返到高压麻粒岩相条件下深熔作用的产物,而且白云母的脱水熔融是引发岩石发生深熔作用的主要机制。柴北缘地区已有的资料综合研究表明,大陆深俯冲板片在俯冲/碰撞和折返过程中可能经历了多重深熔作用。  相似文献   

5.
The Xitieshan terrane, located in the central part of the North Qaidam ultrahigh pressure (UHP) metamorphic belt, China, is mainly composed of orthogneiss and paragneiss and a few intercalated eclogite layers and boudins. Based on their bulk-rock TiO2-contents, the eclogites can be subdivided into a high-Ti group (TiO2 > 2%) and a low-Ti group (TiO2 < 2%). Whole-rock major and trace element analyses revealed that the protoliths of the low-Ti eclogites are normal-type mid-ocean ridge basalts (N-MORB), whereas those of the high-Ti eclogites are either enriched-type mid-ocean ridge basalts (E-MORB) or near ridge seamount basalts, respectively. The Sr–Nd isotopes of eclogites of both groups are similar to those of MORB. Those of the low-Ti eclogites are characterized by positive εNd(T) and restricted ISr values and therefore provide further evidence for the formation of the protoliths of the eclogites in an oceanic environment. On the other hand, the Sr–Nd isotopes of high-Ti eclogites show mainly positive but also some negative εNd(T) values and relatively broadly distributed ISr values, indicating minor crustal contamination of the ocean floor basalts. Considering available 750–877 Ma protolith ages preserved in zircon cores, it is inferred that some of the eclogites derived from Neoproterozoic protoliths were emplaced onto the crust far ahead of the Paleozoic deep subduction, while the other eclogites originate from a different oceanic crust, e.g., the Paleo-Qilian ocean, indicating multiple orogenies in the geological history of the Xitieshan terrane, China.Whole-rock and in-situ LA-ICP-MS mineral trace element analyses of eclogites revealed two stages of fluid behavior during retrogression that correspond to the two exhumation stages uncovered by phase equilibrium calculations. The mineral scale trace element distributions and trace element inheritance of newly formed amphibole from its precursors indicate that, at the peak metamorphic stage (M1) and at the earlier (eclogite facies) overprint (M2), the fluid was internally controlled by the rock itself. Within a mafic lens, the amount of water-soluble elements (e.g., Rb, Sr, Ba, U, Pb and LREE), observed in the whole-rock compositions as well as in amphiboles, increases from the core (phengite-bearing eclogite) to the rim (amphibolite) and implies an external fluid source for the amphibolite facies retrogression (M3) which should be helpful for the final exhumation of UHP eclogite.  相似文献   

6.
对柴达木盆地北缘锡铁山地区花岗岩中的锆石采用单颗粒锆石U-Pb法(TIMS)测年,谐合线上数据点给出的结果为428±1Ma,代表了花岗质岩浆的形成(上侵)时代.在锆石岩相学研究的基础上对围岩片麻岩中的锆石采用SHRIMP进行测年,10个点的Th/U比变化范围在0.01~0.08,表明锆石为变质成因,10个数据点给出的206Pb/238U表面年龄的加权平均值为435±7Ma,代表变质岩的变质年龄.两类岩石的锆石年龄在误差范围内一致,岩浆作用与变质作用时差很小.花岗岩地球化学特征表明岩体为Ⅰ型花岗岩,它的主量元素、稀土元素和微量元素特征与围岩片麻岩十分类似,表明花岗岩的源岩在成分上与围岩片麻岩相似.花岗岩的Nd模式年龄TDM=1.4~1.5Ga,围岩片麻岩的TDM=1.9~2.2Ga,暗示岩浆形成时有地幔物质的添加或混染.推测是由于地幔上隆使深部地壳岩石发生了部分熔融作用,形成花岗质岩浆时添加了地幔物质.锡铁山花岗岩是早古生代碰撞后伸展环境的产物.  相似文献   

7.
High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore the fluid flow and the associated element mobility during deep subduction and exhumation of the continental crust,we investigated the major and trace elements of Ti-rich minerals.Additionally,U–Pb dating,trace element contents,and Lu–Hf isotopic composition of zircon grains in the UHP eclogite and associated rutile-quartz veins were examined in the North Qaidam UHP metamorphic belt,Yuka terrane.The zircon grains in the rutile-quartz veins have unzoned or weak oscillatory zonings,and show low Th/U ratios,steep chondrite-normalized patterns of heavy rare earth elements(HREEs),and insignificant negative Eu anomalies,indicating their growth in metamorphic fluids.These zircon grains formed in 4313 Ma,which is consistent with the 4322 Ma age of the host eclogite.As for the zircons in the rutile-quartz veins,they showed steep HREE patterns on one hand,and were different from the zircons present in the host eclogite on the other.This demonstrates that their formation might have been related to the breakdown of the early stage of garnet,which corresponds to the abundance of fluids during the early exhumation stage.The core-rim profile analyses of rutile recorded a two-stage rutile growth across a large rutile grain;the rutile core has higher Nb,Ta,W,and Zr contents and lower Nb/Ta ratios than the rim,indicating that the rutile domains grew in different metamorphic fluids from the core towards the rim.The significant enrichment of high field strength elements(HFSEs)in the rutile core suggests that the peak fluids have high solubility and transportation capacity of these HFSEs.Furthermore,variations in the Nb vs.Cr trends in rutile indicate a connection of rutile to mafic protolith.The zircon grains from both the rutile-quartz veins and the host eclogite have similar Hf isotopic compositions,indicating that the vein-forming fluids are internally derived from the host eclogite.These fluids accumulated in the subduction channel and were triggered by local dehydration of the deeply subducted eclogite during the early exhumation conditions.  相似文献   

8.
Summary Amphibolite-facies para- and orthogneisses near Dulan, in the southeast part of the North Qaidam terrane, enclose minor ultra-high pressure (UHP) eclogite and peridotite. Field relations and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. Ion microprobe U–Pb and REE analyses of zircons from two granitic orthogneisses indicate magmatic crystallization at 927 ± Ma and 921 ± 7 Ma. Zircon rims in one of these samples yield younger ages (397–618 Ma) compatible with partial zircon recrystallization during in-situ Ordovician-Silurian eclogite-facies metamorphism previously determined from eclogite and paragneiss in this area. The similarity between a 2496 ± 18 Ma xenocrystic core and 2.4–2.5 Ga zircon cores in the surrounding paragneiss suggests that the granites intruded the sediments or that the granite is a melt of the older basement which supplied detritus to the sediments. The magmatic ages of the granitic orthogneisses are similar to 920–930 Ma ages of (meta)granitoids described further northwest in the North Qaidam terrane and its correlative west of the Altyn Tagh fault, suggesting that these areas formed a coherent block prior to widespread Mid Proterozoic granitic magmatism.  相似文献   

9.
张聪  刘晓瑜  杨经绥  李鹏  张立飞 《岩石学报》2016,32(12):3715-3728
同一造山带中所包含的多期造山作用信息是研究不同时代区域构造演化的重要依据,对理解不同时期造山过程中岩石组合及其地球化学演化有重要的指示意义。但由于晚期造山作用往往会部分或者完全抹除岩石中保存的早期造山作用信息,使得对记录多期造山作用的岩石中早期造山带变质作用及年代学信息的研究变得十分困难。独居石为一种副变质岩中的常见副矿物,由于其具有很高的U-Th-Pb体系封闭温度和对流体及变质温压条件的敏感性,使其可以记录多期造山过程中丰富的年代学信息。电子探针独居石原位化学定年方法使得年代学信息与岩石中矿物学信息及变质反应相联系,从而得到不同时期岩石记录的P-T-t轨迹。我们利用独居石电子探针原位U-Th-Pb定年手段与岩石学研究相结合的方法,在柴北缘早古生代加里东期超高压变质带锡铁山地区的含石榴石蓝晶石/夕线石黑云斜长片麻岩基质矿物及石榴石变斑晶的独居石中获得886±18Ma格林威尔期的年龄等时线。独居石稀土元素配分特征与新元古代变质独居石相吻合。通过传统矿物对温压计计算得到格林威尔期现存矿物组合记录了高角闪岩相变质温压条件607~727℃,6.5~10.0kbar,略高于区内记录古生代变质作用的副片麻岩。与记录古生代加里东期变质年龄的副片麻岩相比,格林威尔期副片麻岩在微量元素地球化学上具有高的稀土总量和明显的Eu的负异常特点(Eu/Eu*=0.50),并相应的亏损Ba、Sr元素,表现出活动大陆边缘沉积岩的地球化学特征。结合全球格林威尔期造山事件及罗迪尼亚超大陆的形成及裂解过程,我们认为柴北缘地区在新元古代时期应为与罗迪尼亚超大陆形成有关的活动大陆边缘地区。  相似文献   

10.
"华北地区古生代变质作用和动力学"是2011—2013年中国地质调查局地质调查工作项目,旨在通过变质作用研究,揭示古生代区域大地构造体制与演化过程.通过对河北赤城地区红旗营子杂岩、内蒙古中部温都尔庙群、宝音图群、锡林郭勒杂岩、林西地区的双井片岩等开展了重点研究,表明华北北部地区古生代以来经历了4期不同性质的变质作用,对应不同的构造背景:志留纪的高压低温型(454~426 Ma),指示洋壳的俯冲过程;早泥盆纪的中压型(~400 Ma),指示与地壳加厚有关的造山过程;石炭纪的低压高温型(345~309 Ma),指示造山后的陆内伸展过程,以及早三叠纪(~240 Ma)的中-低压低温型,指示与有限海盆闭合有关的陆内造山过程.结合区域的岩浆、沉积以及构造等方面的地质特征,认为华北北部地区古生代以来经历了复合造山的构造演化过程:早古生代期间的古亚洲洋俯冲;早泥盆纪与古亚洲洋闭合有关的碰撞造山;中-晚泥盆纪-二叠纪陆内伸展,形成陆相盆地-陆表海-有限海盆;以及早三叠纪的有限洋盆被动闭合等过程.这为阐明华北地区古生代地球动力学和成矿背景提供了坚实的变质岩石学基础.  相似文献   

11.
The Xitieshan deposit (~ 64 Mt at 4.86% Zn, 4.16% Pb, 58 g/t Ag, and 0.68 g/t Au) is hosted by the Middle to Late Ordovician Tanjianshan Group of the North Qaidam tectonic metallogenic belt, NW China. This belt is characterized by island arc volcanic, ultra-high pressure (UHP) metamorphic and ophiolitic rocks. The Tanjianshan Group constitutes a succession of metamorphosed bimodal volcanic and sedimentary rocks, which are interpreted to have formed on the margin of a back-arc ocean basin between the Qaidam block and the Qilian block.Four stratigraphic units are identified within the Ordovician Tanjianshan Group. From northeast to southwest they are: 1) unit a, or the lower volcanic-sedimentary rocks, comprising bimodal volcanic rocks (unit a-1) and sedimentary rocks (unit a-2) ranging from carbonates to black carbonaceous schist; 2) unit b, or intermediate-mafic volcaniclastic rocks, characterized by intermediate to mafic volcaniclastic rocks intercalated with lamellar carbonaceous schist and minor marble lenses; 3) unit c, a purplish red sandy conglomerate that unconformably overlies unit b, representing the product of the foreland basin sedimentation during the Early Silurian; 4) unit d, or mafic volcanic rocks, from base to up, comprising the lower mafic volcaniclastic rocks (unit d-1), middle clastic sedimentary rocks (unit d-2), upper mafic volcaniclastic rocks (unit d-3), and uppermost mafic volcanic rocks (unit d-4). Unit a-2 hosts most of the massive sulfides whereas unit b contains subordinate amounts.The massive stratiform lenses constitute most of the Xitieshan deposit with significant amount of semi-massive and irregularly-shaped sulfides and minor amounts in stringer veins. Pyrite, galena and sphalerite are the dominant sulfide minerals, with subordinate pyrrhotite and chalcopyrite. Quartz is a dominant gangue mineral. Sericite, quartz, chlorite, and carbonate alteration of host rocks accompanies the mineralization.U-Pb zircon geochronology yields three ages of 454 Ma, 452 Ma and 451 Ma for the footwall felsic volcanic rocks in unit a-1, sedimentary host rocks in unit a-2 and hanging-wall unit b, respectively. The Xitieshan deposit is considered to be coeval with the sedimentation of unit a-2 and unit b of the Tanjianshan Group. The Xitieshan deposit has been intensely deformed during two phases (main ductile shear and minor ductile-brittle deformation). The main ductile shear deformation controls the general strike of the ore zones, whereas minor deformation controls the internal geometry of the ore bodies. 40Ar-39Ar age of muscovite from mylonitized granitic gneisses in the ductile shear zone is ~ 399 Ma, which is interpreted to date the Xitieshan ductile shear zone, suggesting that Early Devonian metamorphism and deformation post-dated the Tanjianshan Group.The Xitieshan deposit has many features similar to that of the Bathurst district of Canada, the Iberian Pyrite Belt of Spain, the Wolverine volcanogenic massive sulfide deposit in Canada. Based on its tectonic setting, host-rock types, local geologic setting, metal grades, geochronology, temperatures and salinities of mineralizing fluid and source of sulfur, the Xitieshan deposit has features similar to sedimentary exhalative (SEDEX) and VMS deposits and is similar to volcanic and sediment-hosted massive sulfide (VSHMS) deposits.  相似文献   

12.
柴北缘锡铁山榴辉岩的地球化学特征   总被引:12,自引:16,他引:12  
柴北缘锡铁山的榴辉岩呈透镜状分布在片麻岩中,榴辉岩的SiO2为45.0%~49.83%,,Al2O3=11.31~16.52,与火成岩中的拉斑玄武质岩石类似。其稀土配分模式有3种类型:(1)轻稀土富集型,(La/Yb)N=1.74~2.81,δEu=0.86~1.07,与E-MORB类似;(2)平坦型,(La/Yb)N=0.80~1.22,δEu=0.96~1.20,与T-MORB相似;(3)轻稀土亏损型,(La/Yb)N=0.66。δEu=1.03,与N-MORB类似。微量元素中Rb、Ba、Th略富集,可能与地壳物质的混染有关。δEd(0)=2.52~10.98,δEd(800Ma)=3.05~9.20,显示大洋亏损地幔的特征。初步认为榴辉岩是洋壳俯冲的产物,与大别-苏鲁地区榴辉岩的成因明显不同。  相似文献   

13.
Laser Raman spectroscopy and cathodoluminescence (CL) images reveal that most zircon separated from paragneiss and orthogneiss in drillhole CCSD‐PP2 at Donghai, south‐western Sulu terrane, retain low‐P mineral‐bearing inherited cores, ultrahigh‐pressure (UHP) mineral‐bearing mantles and low‐P mineral‐bearing (e.g. quartz) rims. SHRIMP U–Pb analyses of these zoned zircon identify three discrete and meaningful age groups: Proterozoic protolith ages (> 680 Ma) are recorded in the inherited cores, the UHP metamorphic event in the coesite‐bearing mantles occurred at 231 ± 4 Ma, and the late amphibolite facies retrogressive overprint in the quartz‐bearing rims was at 211 ± 4 Ma. Thus, Neoproterozoic supracrustal protoliths of the Sulu UHP rocks were subducted to mantle depths in the Middle Triassic, and exhumed to mid‐crustal levels in the Late Triassic. The exhumation rate deduced from the SHRIMP data and metamorphic P–T conditions is 5.0 km Ma?1. Exhumation of the Sulu UHP terrane may have resulted from buoyancy forces after slab break‐off at mantle depths.  相似文献   

14.
15.
Numerous granitic intrusions crop out in the eastern segment of the North Qaidam block (NQ), NW China. To evaluate their ages, petrogenesis and genetic relationships to other granitoids in the NQ, we present geochemical and geochronologic data for six intrusive bodies and review regional data. Zircon U-Pb (SHRIMP) dating yielded ages of 413 ± 3 Ma for the Hadesengou granite; 254 ± 3 Ma for the Xugeigou granite; 251 ± 1 Ma for the Qiluoshan granite; 249 ± 1 and 248 ± 2 Ma for the Chahannuo hornblende diorite and granite, respectively; 240 ± 2 Ma for the Chahanhe granite; and 250 ± 1 and 244 ± 3 Ma for the Shailekegoulei granodiorite and granite, respectively. Consequently, the Wulan plutons can be divided into two petrologic groups: Early Devonian (D1) quartz monzonite and syenogranite, and Late Permian to Early Triassic (P3-T1) hornblende diorite, granodiorite, and granite. The D1 granitic intrusions have geochemical affinities with A-type granites (A2-type) characterized by low Ca, Sr, Ba and Nb, and high Fe, Ga, Y and Rb, consistent with derivation by partial melting of metapelitic source rocks containing a small amount of metagraywacke. The P3-T1 I-type granitic intrusions are geochemically typical of active continental margin rocks, consistent with derivation by partial melting of metabasalt and clay-poor metagraywacke. Combined with previous studies, we recognize five periods of granitic magmatism in the NQ: (1) 465–473 Ma; (2) 423–446 Ma; (3) 391–413 Ma; (4) 372–383 Ma; and (5) 240–271 Ma. Based on the temporal-spatial distribution of granitic intrusions in the NQ and the regional tectonic evolution, we interpret the first and second periods of granitic magmatism as related to normal plate subduction, and the third period to slab break-off and exhumation of the subducted plate. The fourth stage of granitic magmatism is attributed to large-scale lithospheric mantle delamination, involving the differential movement of orogenic blocks. The fifth period of granitic plutonism probably reflects northward subduction of the East Kunlun Paleotethys oceanic crust and southward subduction of Zongwulong oceanic crust beneath the Oulongbuluke continental block.  相似文献   

16.
《Gondwana Research》2016,29(4):1516-1529
Voluminous Proterozoic (~ 1700 Ma) rapakivi granites occur in several cratons, especially in the northern hemisphere. Similar Proterozoic rapakivi granites have recently been recognized in the Paleozoic North Qaidam orogen, western segment of the China Central Orogenic System (CCOS). SHRIMP zircon U–Pb dating of these granites yielded ages of 1778 ± 17 and 1778 ± 12 Ma. These granites exhibit typical rapakivi textures. They are ferroan, alkalic to alkalic-calc, metaluminous to peraluminous and characterized by high Ga/Al ratios, Na2O + K2O and rare earth elements (apart from Eu) contents, but low MgO, CaO and Sr contents. These are typical A-type granite features. Whole-rock εNd(t) values of the granites range from − 6.09 to − 5.74 with Nd model ages of 2762 to 2733 Ma, and their zircon εHf(t) values are from − 8.3 to − 5.2 with two-stage Hf model ages of 2944 to 2800 Ma, suggesting that these rocks were derived from old continental crust. The ages, rapakivi texture and geochemical features suggest that these granites are very close to typical Proterozoic (~ 1700 Ma) rapakivi granites within the North China Craton (NCC) and belong to the group of Proterozoic rapakivi granites of the northern hemisphere. These indicate that part of the basement of the North Qaidam orogen in the western CCOS is similar to that of the NCC or was probably derived from it, and then became involved in the CCOS. This provides new data to solve the dispute on the basement origin in this orogen.  相似文献   

17.
榴辉岩作为俯冲带中重要的岩石类型保存有丰富的地球动力学信息。对榴辉岩及其退变质岩石的研究有助于建立俯冲带演化的p-T轨迹,了解俯冲岩石在折返过程中温压条件及矿物相的变化,从而对俯冲带折返的动力学机制进行限定。对柴北缘锡铁山双矿物榴辉岩及含多硅白云母榴辉岩进行了详细的岩石学研究。在NC(K)FMASH体系中对两类榴辉岩进行变质相平衡模拟,得到双矿物榴辉岩的峰期温压条件为745~790℃,大于2.8~3.0GPa(M1),后经历等温降压过程达到角闪石榴辉岩岩相(670~770℃,1.6~2.2GPa,M2),与含多硅白云母榴辉岩经历了相同的折返过程。锡铁山双矿物榴辉岩的原岩具有N-MORB的地球化学特征,而含多硅白云母榴辉岩则显示E-MORB或者OIB特征,二者原岩成分存在明显差异。两类榴辉岩的p-T演化过程和地球化学特征表明.锡铁山双矿物榴辉岩与含多硅白云母榴辉岩矿物学特征的差异是其原岩的多源性造成的,而与俯冲后折返过程中的退变质作用无必然联系。  相似文献   

18.
Fission-track dating was conducted on zircons and apatites from 11 cores of the upper Xiaganchaigou Formation and lower Shangganchaigou Formation (northwestern Qaidam Basin). The obtained apatite fission-track age is 3.1–61.9 Ma, and the zircon fission-track age is 49.2–123.5 Ma. Although the average apatite age is consistent with ages predicted from the stratigraphy, nine of the 11 apatite fission-track ages have \(\hbox {P}(\upchi ^{2}) < 5\%\), indicating that the grains experienced heterogeneous annealing after sedimentation. The average zircon age is greater than that indicated by stratigraphy, and all eight zircon fission ages have \(\hbox {P}(\upchi ^{2})>5\%\), exhibiting consistent characteristics and indicating that zircons retain provenance age information after burial. From the zircon and apatite ages, the fission-track length distribution, and the geological setting, the northwestern Qaidam Basin has experienced two tectonothermal events since the Late Mesozoic, at \(39.1 \pm 9.3\) to \(133.7\,\pm \,6.6\,\hbox {Ma}\) and \(1.2 \pm 0.6\) to \(32.0\,\pm \,3.0\,\hbox {Ma}\). The earlier (39.1–133.7 Ma) tectonothermal event resulted from the initial collision of the Indian and Eurasian plates. As a consequence of the collision, the Altyn Tagh fault, which forms the northwestern boundary of the Qaidam Basin, began to develop. Subsequently, uplift of the Altyn Tagh mountains began and the northwestern depression of the Qaidam Basin started to form. The later (1.2–32.0 Ma) tectonothermal event resulted from further collision of the Indian and Eurasian plates along the Yarlung Tsangpo suture zone. Strata in the Qaidam Basin were further deformed by transpression in this period and this period played a crucial role in petroleum accumulation.  相似文献   

19.
张聪  田作林  张立飞  黄杰  陈梅 《地质通报》2013,32(12):2044-2054
榴辉岩作为俯冲带中重要的岩石类型保存有丰富的地球动力学信息。对榴辉岩及其退变质岩石的研究有助于建立俯冲带演化的p-T轨迹,了解俯冲岩石在折返过程中温压条件及矿物相的变化,从而对俯冲带折返的动力学机制进行限定。对柴北缘锡铁山双矿物榴辉岩及含多硅白云母榴辉岩进行了详细的岩石学研究。在NC(K)FMASH体系中对两类榴辉岩进行变质相平衡模拟,得到双矿物榴辉岩的峰期温压条件为745~790℃,大于2.8~3.0GPa(M1),后经历等温降压过程达到角闪石榴辉岩岩相(670~770℃,1.6~2.2GPa,M2),与含多硅白云母榴辉岩经历了相同的折返过程。锡铁山双矿物榴辉岩的原岩具有N-MORB的地球化学特征,而含多硅白云母榴辉岩则显示E-MORB或者OIB特征,二者原岩成分存在明显差异。两类榴辉岩的p-T演化过程和地球化学特征表明,锡铁山双矿物榴辉岩与含多硅白云母榴辉岩矿物学特征的差异是其原岩的多源性造成的,而与俯冲后折返过程中的退变质作用无必然联系。  相似文献   

20.
Detailed microtextural observations and bulk chemical analysis were undertaken on a garnet‐pyroxenite nodule within retrograde eclogites from the NE Sulu ultrahigh‐pressure metamorphic (UHPM) terrane. The results suggest that the protolith was a cumulate from a gabbroic body. The nodule consists primarily of coarse clinopyroxene grains with a very high content of the Ca‐Tschermakite molecule. Microscopic observations and back‐scattered electron images (BSE) demonstrate a complicated intergrowth of clinopyroxene, garnet and ilmenite, which represents the peak metamorphic assemblage. The primary clinopyroxene grains are armoured with a thin garnet corona up to 0.5 mm wide that forms an interconnected network. Within the clinopyroxene grains, four sets of garnet lamellae are distributed along crystallographic planes; locally, a vermicular intergrowth of garnet and diopside is developed. Besides the garnet, parallel arrays of ilmenite blebs are common within the clinopyroxene. Hydrous minerals such as amphibole, zoisite and titanite formed at later stages, and replaced diopside, garnet and ilmenite respectively. The P–T conditions determined for the formation of the garnet lamellae indicate that the garnet pyroxenite experienced UHP metamorphism at the same peak P–T condition as its host eclogite. The very high Ca‐Tschermakite content (31–34 mol.%) of the primary clinopyroxene indicates crystallization at about 9–17 kbar and 1250–1450 °C, and together with the microtextural observations, suggests that the protolith of the garnet pyroxenite was a cumulate from a former gabbroic body, in which case, the host eclogite might represent the gabbroic body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号