首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new set of CCD photometric observations for the short period eclipsing binary 1SWASP J1743 (= V1067 Her). We have determined the available times of light minima and two new linear and quadratic ephemerides have been obtained. The photometric solutions for the system have been performed using Wilson and Devinney Code. The 3D and fill out configuration revealed that V1067 Her is an over contact W UMa binary with relatively low fill-out factor of about 16%.We investigated the period variation for the system. It showed a strong evidence of period changes by using the (O-C) residual diagram method and we have concluded long-term orbital period decrease rate dP/dt= −3.0 × 107 d/yr, corresponding to a time scale 8.6 × 105 yr. Such period decrease in the A-type W UMa systems is usually interpreted to be due to mass transfer from the more to the less massive component.  相似文献   

2.
We present CCD photometric observations of the W UMa type contact binary EK Comae Berenices using the 2 m telescope of IUCAA Girawali Observatory, India. The star was classified as a W UMa type binary of subtype-W by Samec et al. (1996). The new V band photometric observations of the star reveal that shape of the light curve has changed significantly from the one observed by Samec et al. (1996). A detailed analysis of the light curve obtained from the high-precision CCD photometric observations of the star indicates that EK Comae Berenices is not a W-type but an A-type totally eclipsing W UMa contact binary. The photometric mass ratio is determined to be 0.349 ± 0.005. A temperature difference of ΔT = 141 ± 10 K between the components and an orbital inclination of i[°] = 89.800 ± 0.075 were obtained for the binary system. Absolute values of masses, radii and luminosities are estimated by means of the standard mass-luminosity relation for zero age main-sequence stars. The star shows O’Connell effect, asymmetries in the light curve shape around the primary and secondary maximum. The observed O’Connell effect is explained by the presence of a hot spot on the primary component.  相似文献   

3.
Herein, we present the preliminary results of the spectral analysis of the Suzaku data of SW Ursae Majoris (SW UMa) and BZ Ursae Majoris (BZ UMa) which were obtained in their quiescent states. The aim of this study was to analyse 0.5–6.0 keV energy range X-ray photons of the Suzaku satellite and to determine their emission mechanisms and the areas where they were radiated from these two dwarf novae. No study on this energy range for BZ UMa has been reported in the literature. We analysed the Suzaku data in the (0.5–6.0) keV and in (0.5–2.5) keV energy bands of the systems separatelly to search for possible differences between the emission mechanisms in the energy ranges; however, none were found. We obtained the best-fitted spectral models, flux, luminosity, temperature and mass accretion rate values for the systems. The white dwarf radius of BZ UMa, which has not been reported in the literature, was found to be 6.88 × 108 cm. From this study, we concluded that the mass accretion rate values for both systems were lower than the critical mass accretion rate value in the boundary layers of cataclysmic variables, which indicates that the boundary layers are composed of optically thin thermal X-ray emitting gas in their quiescent state; these results support those of previous studies regarding SW UMa and some studies regarding BZ UMa. Another result was that there can be a coronal structure above the boundary layer which act as soft X-ray emitter for SW UMa.  相似文献   

4.
Phase angle and temperature are two important parameters that affect the photometric and spectral behavior of planetary surfaces in telescopic and spacecraft data. We have derived photometric and spectral phase functions for the Asteroid 4 Vesta, the first target of the Dawn mission, using ground-based telescopes operating at visible and near-infrared wavelengths (0.4–2.5 μm). Photometric lightcurve observations of Vesta were conducted on 15 nights at a phase angle range of 3.8–25.7° using duplicates of the seven narrowband Dawn Framing Camera filters (0.4–1.0 μm). Rotationally resolved visible (0.4–0.7 μm) and near-IR spectral observations (0.7–2.5 μm) were obtained on four nights over a similar phase angle range. Our Vesta photometric observations suggest the phase slope is between 0.019 and 0.029 mag/deg. The G parameter ranges from 0.22 to 0.37 consistent with previous results (e.g., Lagerkvist, C.-I., Magnusson, P., Williams, I.P., Buontempo, M.E., Argyle, R.W., Morrison, L.V. [1992]. Astron. Astrophys. Suppl. Ser. 94, 43–71; Piironen, J., Magnusson, P., Lagerkvist, C.-I., Williams, I.P., Buontempo, M.E., Morrison, L.V. [1997]. Astron. Astrophys. Suppl. Ser. 121, 489–497; Hasegawa, S. et al. [2009]. Lunar Planet. Sci. 40. ID 1503) within the uncertainty. We found that in the phase angle range of 0° < α ? 25° for every 10° increase in phase angle Vesta’s visible slope (0.5–0.7 μm) increases 20%, Band I and Band II depths increase 2.35% and 1.5% respectively, and the BAR value increase 0.30. Phase angle spectral measurements of the eucrite Moama in the lab show a decrease in Band I and Band II depths and BAR from the lowest phase angle 13° to 30°, followed by possible small increases up to 90°, and then a dramatic drop between 90° and 120° phase angle. Temperature-induced spectral effects shift the Band I and II centers of the pyroxene bands to longer wavelengths with increasing temperature. We have derived new correction equations using a temperature series (80–400 K) of HED meteorite spectra that will enable interpretation of telescopic and spacecraft spectral data using laboratory calibrations at room temperature (300 K).  相似文献   

5.
Ultraviolet spectra from the International Ultraviolet Explorer (IUE) and from the Hubble Space Telescope (HST) of the symbiotic novae AG Peg during the period 1978–1996 are analyzed. Some spectra showing the modulations of spectral lines at different times are presented. We determined the reddening from the 2200 Å feature, finding that E(B−V) = 0.10 ± 0.02. We studied N IV] at 1486 Å, C IV 1550 Å, and O III] at 1660 Å, produced in the fast wind from the hot white dwarf. The mean wind velocity of the three emission lines is 1300 km s−1 (FWHM). The mean wind mass loss rate is ∼6 × 10−7 M yr−1. The mean temperature is ∼6.5 × 105 K. The mean ultraviolet luminosity is ∼5 × 1033 erg s−1. The modulations of line fluxes in the emitting region at different times are attributed to the variations of density and temperature of the ejected matter as a result of variations in the rate of mass loss.  相似文献   

6.
We present the results of our investigation on the geometrical and physical parameters of W UMa-type binary TYC1174-344-1 from analyzed CCD (BVRI) light curves and radial velocity data. The photometric data were obtained in 2009 at Ankara University Observatory (AUO) and the spectroscopic observations were made in 2008 at Astrophysical Observatory of Asiago (Italy). Light and radial velocity observations were analyzed simultaneously by using the well-known Wilson–Devinney (2007 revision) code to obtain absolute and geometrical parameters. According to our solutions, the system is found to be a low mass-ratio A-type W UMa system. Combining our photometric solution with the spectroscopic data, we derived mass and radii of the eclipsing system as M1 = 1.381 M, M2 = 0.258 M, R1 = 1.449 R and R2 = 0.714 R. We finally discussed the evolutionary condition of the system.  相似文献   

7.
In this article, a period analysis of the late-type eclipsing binary VV UMa is presented. This work is based on the periodic variation of eclipse timings of the VV UMa binary. We determined the orbital properties and mass of a third orbiting body in the system by analyzing the light-travel time effect. The O−C diagram constructed for all available minima times of VV UMa exhibits a cyclic character superimposed on a linear variation. This variation includes three maxima and two minima within approximately 28,240 orbital periods of the system, which can be explained as the light-travel time effect (LITE) because of an unseen third body in a triple system that causes variations of the eclipse arrival times. New parameter values of the light-time travel effect because of the third body were computed with a period of 23.22 ± 0.17 years in the system. The cyclic-variation analysis produces a value of 0.0139 day as the semi-amplitude of the light-travel time effect and 0.35 as the orbital eccentricity of the third body. The mass of the third body that orbits the eclipsing binary stars is 0.787 ± 0.02 M, and the semi-major axis of its orbit is 10.75 AU.  相似文献   

8.
We present new photometric observations for the eclipsing binary DF CVn, and determined five light minimum times. By using the Wilson–Devinney code, two sets of photometric solutions were deduced from our observations in 2009. The asymmetric light curves obtained on 2009 March 5 were modeled by a dark spot on the more massive component. The results indicate that DF CVn is a W-type weak-contact binary, with a mass ratio of q  0.28 and an overcontact degree of f  20%. From the O ? C curve of minimum times, it is found that there exists a cyclic variation, whose period and semi-amplitude are P3 = 17.2(±0.9) year and A = 0.d0070(±0.d0008), respectively. This kind of cyclic oscillation may possibly result from the light-time effect due to the presence of an unseen third body. This kind of additional body may extract angular momentum from the central system. The low-amplitude changes of the light curves on a short-time scale (e.g., half a month) may be attributed to the dark spot activity, which may result in angular momentum loss via magnetic breaking. With angular momentum loss, the weak-contact binary DF CVn will evolve into a deep-contact configuration.  相似文献   

9.
《Planetary and Space Science》2007,55(11):1494-1501
In this work, we calculate the neutral Na production rates on the Moon and Mercury, as due to the impacts of meteoroids having an impact probability on the surface that can influence the daily observations of the exosphere: the meteoroids radius range considered for the Moon and Mercury are 10−8–0.15 and 10−8–0.10 m, respectively. We also estimate the mass of meteoroids that has impacted the surfaces of the Moon and Mercury in the last 3.8 Gy (after the end of the Late Heavy Bombardment).The results of our model are that (i) the Na production rates are ∼(3–4.9)×104 and ∼(1.8–2.3)×106 atoms cm−2 s−1, for Moon and Mercury, respectively, and (ii) in the last 3.8 Gy, the mass of meteoroids that has impacted the whole surface of the Moon and Mercury has been 8.86×1018 and 2.66×1019 g, respectively.  相似文献   

10.
The new multi-color BVRI photometric light curves of the short-period eclipsing binary GSC 3576-0170 were obtained on two consecutive nights (October 5 and 6, 2009). With the 2003 version of Wilson–Devinney program, the precise photometric solutions are derived for the first time. The result shows that GSC 3576-0170 is a semi-detached binary system with a large temperature difference of approximately 1490 K. The light-curve distortions are further explained by a hot spot on the secondary component through mass transfer via a stream hitting the facing surface of the secondary component. By analyzing all available light minimum times, we also derived an update ephemeris and found for the first time a possible periodic oscillation with an amplitude of 0.0038 days and a period of 4.3 years. The periodic oscillation could be explained either by the light-time effect due to a presumed third component or by magnetic activity cycle of the system.  相似文献   

11.
This study presents an investigation of the orbital period variations of five Algol type binaries, UX Leo, RW Mon, EQ Ori, XZ UMa and AX Vul based on all available minima times. The OC diagrams of all systems exhibit a periodic variation superimposed on a downward parabolic segment. The mass loss due to magnetic braking effect in the cooler components is assumed to account for the parabolic variation with a downward shape, while it is suggested that the light-time effect (LITE) due to an unseen component around the eclipsing binaries explains the tilted sinusoidal changes in their OC diagrams. The orbital period decrease rates for the systems are estimated as approximately between about 0.7 and 2.5 s per century. It is clearly seen that mass loss effect is more dominant than the expected mass transfer for classical Algols in this study. The minimum mass of the probable third bodies around the eclipsing pairs was calculated to be ?0.5 M except for UX Leo, in which it was estimated to be approximately 0.9 M. In order to search for third lights in the light curves of five systems, the V-light curves of the systems were analyzed and their physical and photometric parameters were determined. For UX Leo, a significant third light contribution was determined. We found a very small third light that can be tested using multi-color light curves, for RW Mon, EQ Ori and XZ UMa, while a third light for AX Vul could not be exposed.  相似文献   

12.
《New Astronomy》2007,12(6):461-470
We present results of a study that combines UBVI photometry, MK spectral classification and proper motions in the area of the, up to now unknown, open cluster Ruprecht 58 at the Puppis region. Star counts from the 2MASS data catalog together with the analysis of CCD UBVI photometry demonstrate that it is a real open cluster with 9′ size approximately. The cluster is placed at a distance of 3.9 kpc and is about 250 Myr old with mean reddening E(BV) = 0.33 mag. Proper motions confirm Ruprecht 58 is a real cluster with mean absolute proper motions μαcosδ = −2.77 ± 0.45 mas/yr and μδ = 4.54 ± 0.45 mas/yr in the magnitude range 13.5 < V < 14.5 and μαcosδ = −2.70 ± 0.32 mas/yr and μδ = 3.19 ± 0.32 mas/yr in the range 14.5 < V < 16.0. The computation of the cluster mass spectrum slope yielded x = 1.8 in the mass range from ≈1.4 to ≈4m.  相似文献   

13.
We present new B- and V-band photometry of the W UMa-type binary system QX And, which is a member of the open cluster NGC 752. Revised orbital period and new ephemerides were given for the binary system based on the data of times of light minima. The result of a period analysis reveals that the system is undergoing a continuous orbital period increase during the past decades. The rate of period increasing turns out to be about 2.7 × 10?7 d yr?1. With the Wilson–Devinney code, a photometric solution is computed. It yields a contact configuration for the system with a filling factor of 0.361. Combining the results from the photometric solution along with that from the radial-velocity observations, we have determined the absolute parameters for the two components of the system. The masses, radii and luminosity of the primary and secondary stars are calculated as 1.43 ± 0.04 M, 1.45 ± 0.09 R, 2.87 ± 0.40 L and 0.44 ± 0.02 M, 0.87 ± 0.05 R, 0.99 ± 0.13 L, respectively. The evolutionary status and physical nature of the contact binary system were discussed compared with the theoretical models.  相似文献   

14.
A total of 311 BVRI observations were carried out on 4 May 2013 for the new short period W UMa system 1SWASP J133105.91 + 121538.0 using the 1.88 m reflector telescope of Kottamia Astronomical Observatory (KAO) at NRIAG. A photometric solution of these light curves was obtained by means of Wilson–Devinney (WD) code. A spotted model was applied to treat the asymmetry of the light curve. The results show that the more massive component is hotter than the less massive one with about ΔT  300 K. The system is at a distance of 89 ± 3.6 pc. Based on the physical parameters of the system, we investigate the evolutionary state of the components. Both components are above the zero age main sequence (ZAMS) track by about 0.2 magnitudes.  相似文献   

15.
We present a multicolor photometry for the eclipsing binary WY Hydrae, observed on four nights of 2008 December. From our new observations and Carr’s data, the photometric solutions were deduced by using the updated W–D program. The results show that WY Hya is a detached binary with a mass ratio of q = 0.970(±0.005).By analyzing the OC curve, it is found that there exists either a continuous period increase or a cyclic variation. From Eq. (2), the orbital period of WY Hya secularly increases at a rate of dP/dt = +3.56(±0.37) × 10?7 days/yr, which may be interpreted by some mass transfer for the near-contact configuration or tidal dissipation. From Eq. (3), the period and semi-amplitude of the periodic oscillation are P3 = 95.4(±4.2) yr and A = 0d.0087(±0d.0003), respectively. This may be likely attributed by light-time effect via the presence of the assumed third body. Assumed in the coplanar orbit with the binary, the mass of the third body should be M3 = 0.18 M. If the unseen additional companion exists, it will extract angular momentum from the binary system. Finally, WY Hya with high fill-out factors (i.e., f1,2 > 80%), may evolve into a semi-detached configuration.  相似文献   

16.
《Astroparticle Physics》2007,26(6):402-411
We constrain the possibility of a non-trivial refractive index in free space corresponding to an energy-dependent velocity of light: c(E)  c0(1  E/M), where M is a mass scale that might represent effect of quantum-gravitational space-time foam, using the arrival times of sharp features observed in the intensities of radiation with different energies from a large sample of gamma-ray bursters (GRBs) with known redshifts. We use wavelet techniques to identify genuine features, which we confirm in simulations with artificial added noise. Using the weighted averages of the time-lags calculated using correlated features in all the GRB light curves, we find a systematic tendency for more energetic photons to arrive earlier. However, there is a very strong correlation between the parameters characterizing an intrinsic time-lag at the source and a distance-dependent propagation effect. Moreover, the significance of the earlier arrival times is less evident for a subsample of more robust spectral structures. Allowing for intrinsic stochastic time-lags in these features, we establish a statistically robust lower limit: M > 0.9 × 1016 GeV on the scale of violation of Lorentz invariance.  相似文献   

17.
Hipparcos photometric data for the massive O-type binary UW CMa were analysed within the framework of the Roche model. Photometric solutions were obtained for five mass ratios in the q = M2/M1 = 0.5–1.5 range. The system is found to be in a contact configuration. Independently of q, the best-fitting model solutions correspond to the orbital inclination i  71° and the temperature of the secondary component T2  33500 K, at the fixed temperature of the primary T1 = 33750 K. Considering that the spectrum of the secondary is very weak, photometric solutions corresponding to the contact configuration favor the mass ratio q smaller than unity (in which case the luminosity of the secondary is smaller than that of the primary). The absolute parameters of the system are estimated for different values of the mass ratio.  相似文献   

18.
《New Astronomy》2007,12(6):446-453
Using reliable trigonometric measurements, we find that the absolute magnitude of cataclysmic variables depends on the orbital period and de-reddened (J  H)0 and (H  K s)0 colours of 2MASS (Two Micron All Sky Survey) photometric system. The calibration equation covers the ranges 0.032d < Porb  0.454d, −0.08 < (J  H)0  1.54, −0.03 < (H  Ks)0  0.56 and 2.0 < MJ < 11.7; It is based on trigonometric parallaxes with relative errors of (σπ/π)  0.4. By using the period-luminosity-colours (PLCs) relation, we estimated the distances of cataclysmic variables with orbital periods and 2MASS observations and compared them with distances found from other methods. We suggest that the PLCs relation can be a useful statistical tool to estimate the distances of cataclysmic variables.  相似文献   

19.
We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high Civ to Hi ratios, for the first absorber in system A, named A1. This value, together with high column density of Civ ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using cloudy), or a stratified cloud (which was modelled using titan), as well as the solar abundances. This model explained both the ionic column density of Civ and the high Civ to Hi ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010  1012 cm−3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.  相似文献   

20.
Among evolved massive stars likely in transition to the Wolf–Rayet phase, IRC + 10420 is probably one of the most enigmatic. It belongs to the category of yellow hypergiants and it is characterized by quite high mass loss episodes. Even though IRC + 10420 benefited of many observations in several wavelength domains, it has never been a target for an X-ray observatory. We report here on the very first dedicated observation of IRC + 10420 in X-rays, using the XMM-Newton satellite. Even though the target is not detected, we derive X-ray flux upper limits of the order of 1–3 × 10−14 erg cm−2 s−1 (between 0.3 and 10.0 keV), and we discuss the case of IRC + 10420 in the framework of emission models likely to be adequate for such an object. Using the Optical/UV Monitor on board XMM-Newton, we present the very first upper limits of the flux density of IRC + 10420 in the UV domain (between 1800 and 2250 Å and between 2050 and 2450 Å). Finally, we also report on the detection in this field of 10 X-ray and 7 UV point sources, and we briefly discuss their properties and potential counterparts at longer wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号