首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of sea-ice on various aspects of the Southern Hemisphere (SH) extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control). In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker.  相似文献   

2.
The balance conditions of relative angular momentum and time-mean kinetic energy and their annual variations are studied for the Northern Hemisphere tropical belt. The belt is divided into two roughly equal size parts, the monsoon and the extramonsoon regions. The data used consist of all available daily rawinsonde reports from the world areological network for the two 5-year periods 1958–63 and 1968–73.In winter, the trade winds in the monsoon and extramonsoon regions are both sources of westerly relative angular momentum for the middle latitude circulation. However, it is found that the angular momentum gained in the extramonsoon region of the Tropics is mostly destroyed by a net southward flow of mass in that region, and becomes regenerated in the monsoon region by a net northward flow of mass there. This excess of angular momentum together with the angular momentum picked up locally in the monsoon region is almost all exported across its northern boundary. It is further found that in winter the Tropics are also an important source of mean kinetic energy for middle latitudes. Again almost all export of kinetic energy was found to take place across the northern boundary of the monsoon sector. Most of this energy must be generated through the pressure gradient term inside the monsoon region itself, the transformation from transient eddy kinetic energy being very small. The proper evaluation of the pressure gradient appears to be the main stumbling block in the present study, preventing us from estimating the generation and thereby, as a residual, the frictional dissipation in the two regions.In summer, the extramonsoon region remains a source of angular momentum, but the monsoon region with its surface westerlies acts as a sink, leading to a sharp reduction (and even a midsummer reversal) of the export into middle latitudes. Also the export of mean kinetic energy almost vanishes in summer, except for a small southward transfer across the equator. The calculations for two 5-year periods give very similar estimates and thereby show the reliability of the results.Parts of this paper were presented at the International Symposium on Monsoons, March 7–12, 1977 in New Delhi, India.  相似文献   

3.
Jon Albretsen 《Ocean Dynamics》2007,57(4-5):287-304
We perform eddy-permitting to eddy-resolving simulations of the Skagerrak/northern North Sea with a terrain-following numerical ocean model. We demonstrate that realistic representations of freshwater input are not required when the focus is on modelling mesoscale structures such as meanders and eddies. To arrive at this conclusion, we analyze the results using a recently developed energy diagnostic scheme to study the sensitivity to realistic representations of the lateral freshwater flux provided to the area from the Baltic Sea and by the major rivers. The scheme is suitable for analysis of growth of instabilities, and it has four basic instability processes prominent. We recognize both horizontal and vertical shear instabilities. There are two processes where average potential energy is converted to eddy kinetic energy, and they are related to the mean gradient in surface elevation and the mean lateral density gradient, respectively. The latter process is known as frontal instability. We demonstrate that the change in the eddy kinetic energy field is small, despite the large variations in the hydrographic properties from experiment to experiment. Moreover, generation of eddy activity appears at the same locations and with approximately the same strength regardless of actual representations of freshwater input. Furthermore, we find that vertical shear instability dominates the energy conversion processes in the Norwegian Coastal Current. Finally, we find that the areas off the northwest coast of Denmark recognized with enhanced eddy kinetic energy level is not caused by instability processes but eddy–eddy interaction rooted in variations in the sea level.  相似文献   

4.
Summary In this article, we present a scale analysis of planetary waves, extended long waves, and long waves. (We mean the extended long waves to be the disturbances whose east-west length is of order 106 m and north-south extension 107 m). We find for the extended long waves the two terms, the interaction between kinetic and available potential energy of the disturbances, and the interaction between the zonal mean available potential energy, and the eddy available potential energy, are of two orders of magnitude larger than the kinetic energy interaction between the disturbances and the associated zonal mean flow. This theoretical result concerning the relative importance of the various interaction terms may be of use in explaining the observational findings thus far available.It is also shown theoretically that the kinetic energy interaction between the planetary waves, the horizontal size of which is 107 m, and the long waves, whose horizontal size is 106 m, is of the same order as the interaction of kinetic energy between the zonal mean motion and the disturbances. This agrees fairly well with the observational estimates thus far obtained.  相似文献   

5.
Barotropic-Baroclinic instability of horizontally and vertically shearing mean monsoon flow during July is investigated numerically by using a 10-layer quasi-geostrophic model. The most unstable mode has a wavelength of about 3000 km and westward phase speed of about 15 m sec–1. The most dominant energy conversion is from zonal kinetic energy to eddy kinetic energy. The structure of the most unstable mode is such that the maximum amplitude is concentrated at about 150 mb and the amplitude at the lowest layers is negligibly small. Barotropic instability of the zonal flow at 150 mb seems to be the primary excitation mechanism for the most unstable mode which is also similar to the observed westward propagating waves in the upper troposphere during the monsoon season. The results further suggest that Barotropic-Baroclinic instability of the mean monsoon flow cannot explain the occurrence of monsoon depressions which have their maximum amplitude at the lower levels and are rarely detected at 200 mb.  相似文献   

6.
Analyses of evolutions of the kinetic and thermal energy associated with the major and minor stratospheric warmings in the winters of 1976–77 and 1975–76 respectively indicate that the predominant ultra-long waves in the stratosphere oscillated at periods of 10–20 days, whereas in the troposphere the predominant long waves oscillated at periods of 8 to 12 days. These tropospheric long waves are almost out-of-phase with the stratospheric ultra-long waves for the minor warming, but in-phase for the major warming. The kinetic energy of the zonal mean flow in the stratosphere for the minor warming is much greater than that for the major warming, indicating that the occurrence of a major warming depends on the magnitude of the kinetic energy of the zonal mean flow relative to that of the meridional convergence of the poleward flux of sensible heat. In both the major and minor warmings, most of the stratospheric eddy kinetic energy is contained in waves of wavenumbers 1 and 2, whereas the stratospheric available potential energy is primarily contained in waves of wavenumber 1. The kinetic energy associated with waves of wavenumber 1 appeared to be 180° out-of-phase with those of wavenumber 2, indicating that nonlinear transfer of kinetic energy occurred between waves of wavenumbers 1 and 2. The occurrences of wind reversals were accompanied by decouplings of the stratospheric and tropospheric motions, and blockings in the troposphere.  相似文献   

7.
Integrated observations were made on the South China Sea shelf at 19°37’ N, 112°04’ E, under strong wind and heavy raining weather conditions in August 2005. Current data were obtained using a moored 150-kHz Acoustic Doppler Current Profiler, turbulent kinetic energy dissipation rate were measured with TurboMapII, and temperature was recorded by thermistor chains. Both the mixed layer thickness and the corresponding mean dissipation rate increased after the strong wind bursts. Average surface mixed layer thickness was 13.4 m pre-wind and 22.4 m post-wind, and the average turbulent dissipation rate in the mixed layer pre-wind and post-wind were 4.26 × 10?7 and 1.09 × 10?6 Wkg?1, respectively. The post-wind dissipation rate was 2.5 times larger than the pre-wind dissipation rate in the interior layer and four times larger in the intermediate water column. Spectra and vertical mode analysis revealed that near-inertial motion post-wind, especially with high modes, was strengthened and propagated downward toward the intermediate layer. The downward group velocity of near-inertial current was about 8.1 × 10?5 ms?1 during the strong wind bursts. The mean percentage of wind work transmitted into the intermediate layer is about 4.2 %. The ratio of post-wind high-mode energy to total horizontal kinetic energy increased below the surface mixed layer, which would have caused instabilities and result in turbulent mixing. Based on these data, we discuss a previous parameterization that relates dissipation rate, stratification, and shear variance calculated from baroclinic currents with high modes (higher than mode 1) which concentrate a large fraction of energy.  相似文献   

8.
Summary A quantitative study of the balance requirements of the atmosphere's kinetic energy during normal winter conditions is made for the whole Northern Hemisphere and separately for the tropics (0–30°N) and the extratropics (30–90°N) by using different sources of data. The most important new finding is a demonstration of the existence (on the isobaric surfaces) of meridional eddy flux of potential energy; this flux approximately counterbalances the meridional flux of kinetic energy. One of the conclusions reached is that maintenance of the large-scale eddies in the tropics is mainly due to forcing by extratropical eddies. This forcing occurs at 30°N as a southward eddy flux of potential energy.  相似文献   

9.
Insight regarding the mean and eddy motion in the Skagerrak/northern North Sea area is gained through an analysis of model-simulated currents, hydrography, kinetic energy and relative vorticity for the 2 years 2000 and 2001. In this a -coordinate ocean model is used. Since the tidal currents are generally strong in the area, care is exercised to distinguish the mesoscale (eddy) motion from higher-frequency motion such as tides, before computing the mean and eddy kinetic energy. The model-simulated response is first compared with available knowledge of the circulation in the area, and when available, also with sea-surface temperature obtained from satellite imagery. It is concluded that the model appears to faithfully reproduce most of what is known, in particularly the upper mixed layer circulation. An analysis of the mean and eddy kinetic energy reveals that many of the mesoscale structures found in the area are recurrent. This is particularly true for the structures off the southern tip of Norway. Also in general, areas of strong mean and eddy kinetic energy are co-located. The exception is the area off the southern tip of Norway, where the eddy kinetic energy is much larger than its mean counterpart. An analysis of the relative vorticity reveals that the variability found is due to the occurrence of recurrent anticyclonic eddies. It is hypothesized that these eddies are generated due to an offshore veering of the Norwegian coastal current (NCC) as it reaches the eastern end of the Norwegian Trench plateau. Here it becomes a free jet, which is then vulnerable to either barotropic instability caused by the horizontal shear in the jet-like structure of the NCC at this point, or a baroclinic (frontal) instability. The latter may come into play when the NCC veers offshore and its relatively fresh water meets the inflowing saline water of Atlantic origin, a frontogenesis that may become strong enough for cyclogenesis to take place. Due to the depth-independent nature of the model-generated eddies, the barotropic instability is the most likely candidate. It remains to resolve the reason for the offshore veering of the NCC. The most likely candidate mechanisms are vortex squeezing or simply that the coastline curvature is large enough for the NCC to separate from the coast in a hydraulic sense.Responsible Editor: Phil Dyke  相似文献   

10.
In order to measure turbulent quantities in coastal waters, one must either avoid or confront the confounding effect of waves. In previous work, we have developed a method to cancel waves when using the variance technique to compute Reynolds stress from acoustic Doppler current profiler (ADCP) data. In this paper, we extend this wave cancellation methodology to measurements of turbulent kinetic energy and dissipation using velocities measured along a single acoustic beam. Velocity profiles were collected using a Teledyne/RDI 1,200 kHz ADCP and a Nortek AWAC. The AWAC has a vertical beam that was programmed by Nortek to deliver profiles of vertical velocity. Vertical velocities are desirable both because they eliminate sources of phase error in the wave cancellation procedure and because they constrain measurement uncertainty with respect to turbulent anisotropy. Results indicate that acoustic profiles taken in standard Doppler mode, to which the vertical beam of the AWAC was limited, were too noisy to resolve turbulence under the deployment conditions herein. Pulse-to-pulse coherent modes such as those available on the ADCP were sufficiently low noise to resolve turbulent signals; however, vertical beam data are not available for this device. Nevertheless, our wave cancellation methodology was successful in removing the overwhelming variance associated with waves from both instruments, allowing realistic estimates of Reynolds stress, turbulent kinetic energy, and dissipation from the ADCP. This method holds even more promise as low-noise operating modes are developed for vertical beam acoustic profiling instruments such as the AWAC.  相似文献   

11.
Flow fluctuations inside an anticyclonic eddy in summertime Funka Bay were examined using three moorings and hydrographic data. The flow pattern above a sharp pycnocline with a concave isopycnal structure during the mooring period was characterized by high mean kinetic energy and relatively low eddy kinetic energy. The ratios of eddy to mean kinetic energy were equal to or less than one, and the mean flow field and isopycnal structure indicated the existence of a stable anticyclonic eddy above the sharp pycnocline under approximate geostrophic balance. Larger flow fluctuations with periods longer than 7 days were dominant inside the eddy. The low-frequency flow fluctuations are accompanied by north to northeastward movement of the eddy with deepening of the pycnocline and spin-up of the anticyclonic circulation. The wind field over Funka Bay is characterized by bay-scale wind fluctuations. The bay-scale winds are greatly influenced by the land topography around Funka Bay, resulting in non-uniform structure with significant wind stress curl. The bay-scale wind fluctuations are termed “locally modified wind” in the present study. The locally modified wind has a negative (positive) wind stress curl in the central–northeastern (southwestern) region of Funka Bay. The north to northeastward movement of the eddy is caused by horizontal non-uniform supply of vorticity from the locally modified wind forcing by the Ekman pumping process. Through this process, the anticyclonic circulation is enhanced (weakened) in the central–northeastern (southwestern) part of the eddy, resulting in the eddy moving north to northeastward with the pycnocline deepening and spin-up of the anticyclonic circulation. The locally modified wind forcing induces low-frequency flow fluctuations through the movement of the eddy in summertime Funka Bay.  相似文献   

12.
The energy equation was applied to four limited regions to investigate the basic mechanisms through which area-averaged eddy kinetic energy is maintained during the northern winter. The regions selected for this study are as follows: extratropical North Pacific (24.2°N–44.6°N, 130°E–150°W), tropical eastern North Pacific (0°–19.6°N, 170°W–110°W), South China Sea and. Bay of Bengal (0°–19.6°N, 80°E–140°E), and Timor Sea and eastern Indian Ocean (0°–19.6°S, 80°E–140°E). The zonally averaged upper flows over the first region were found to be barotropically stable. In contrast, they were barotropically unstable over the second region; namely, eddy motions over the tropical eastern North Pacific are maintained by receiving energy from zonal flows via barotropic interaction. The third and fourth regions are characterized by the importance of the conversion process between eddy available potential and eddy kinetic energy.Contribution No. 77-5, Department of Meteorology, University of Hawaii, USA.  相似文献   

13.
Profiles of velocity turbulence in Monterey Canyon, made with a recently developed expendable probe, show the existence of a very turbulent bottom boundary layer. The turbulent flow is up to 170 m thick and has peak microscale shears of 1 m s−1 per meter. The rate of dissipation of kinetic energy, based on the observed shear variance, averaged over the depth of the turbulent boundary layer ranged from 70 to 500 × 10−6W m−3. Temperature measurements indicate that the flow was up canyon at a time of low tide. The upper bound for the vertical eddy viscosity is estimated to be17 × 10−4m2s−1 and for the vertical eddy diffusivity is estimated to be 15 × 10−4m2s−1. The large vertical scale and the intensity of the observed boundary layer suggest that the flow in Monterey Canyon may be important for the renewal and circulation of water over the continental shelf in the bay area.  相似文献   

14.
Summary Physical phenomena fundamental to rotating, baroclinically driven flows are studied with reference to results of numerical simulation of rotating annulus flows, using a modified Galerkin Model. Both local and global effects of sources, sinks, and transports of heat and momentum are discussed. A convenient energy exchange diagram reveals detailed information that is used to analyze nonlinear equilibration and amplitude vacillation of quasi-geostrophic baroclinic eddies. Transient inertial oscillations, sidewall boundary layers, and internal boundary layers are also discussed.A detailed study of symmetric flows is made, eleven of which are tested numerically for stability with respect to three-dimensional disturbances of a given zonal wave number. Two of the four unstable cases are integrated to a numerical steady state with finite-amplitude, quasi-geostrophic baroclinic waves. With the rigid-lid geometry assumed, the average zonal velocity is zero, resulting in zero phase velocity of the waves. The structure of the thermal wave is nearly coherent in the vertical. These numerical results are consistent with laboratory observations.The eddy flow is quasi-geostrophic except in horizontal boundary layers, where the flow is driven toward low pressure. A small cross-isotherm advection is sufficient to maintain the temperature wave against diffusion and vertical advection. The eddy flow adjusts spontaneously toward the form of the fastest growing or slowest decaying disturbance representable by the truncated space resolution. The eddy flow feeds energy into the mean zonal flow in barotropic-type interactions reflected mainly by the familiar tilted trough. During equilibration, the eddy flow alters the mean zonal flow in such a way that eddy energy sources are reduced relative to energy sinks. However, this adjustment is small compared to the change of total flow, which reflects a relatively large change of eddy amplitude. This suggests that small errors in the mean zonal flow representation can lead to relatively large errors in total flow representation.In most flows studied the kinetic energy dissipation is concentrated in thin boundary layers. In spite of this thinness, the basically laminar character of these dissipative boundary layers allows accurate and economical numerical simulation through the use of characteristic functions, which is a natural refinernent of the basic Galerkin method used. (In this prototype study, only moderately characteristic functions are used, thus sacrificing numerical economy while simplifying the programming.) Similarly, the generation of potential energy, which is transformed into the kinetic energy of the flow, is accurately simulated. In most cases studied, this generation is also concentrated in thin boundary layers where thermal energy is extracted from cold fluid and added to warm fluid.Contribution number 76 of the Geophysical Fluid Dynamics Institute, Florida State University, USA.  相似文献   

15.
Initial dispersion of material in complex-shaped embayments is examined using observations and scaling based in Crail Bay, Pelorus Sound, New Zealand in autumn of 2005. These observations show the highly variable nature of dispersive transport in an embayment with multiple headlands. Acoustic current profiler-derived typical flow speeds were around 0.05 m s−1 which resulted in drifter-derived short-term (<6 h) horizontal eddy diffusivities of the order of 1 m2 s−1 which is somewhat larger than the empirical paradigm. Microstructure estimates of the turbulent kinetic energy dissipation rate were in the range 10−9–10−7 m2 s−3, with some evidence that sidewalls influence the variability and that headlands increase the dissipation rate by at least and order of magnitude. A new parameter relating horizontal diffusivity to circulation and the tide is proposed. This and other scaling comparisons indicate that the headlands in Crail Bay create similar effects to those studied in other systems. However, the long decay times estimated for eddies here implies that they likely interact with other headlands, unlike some previously studied examples.  相似文献   

16.
John Z. Shi  Li‐Feng Lu 《水文研究》2007,21(13):1780-1786
A model of the wave and current boundary‐layer structure was developed using the k–ε turbulent closure model. The finite‐difference method was used to solve the governing equations. Vertical logarithmic grids and equal time steps were adopted. The following modelled simulations were obtained: (1) vertical profiles of wave velocity amplitude, eddy viscosity coefficient and turbulent kinetic energy with waves only; (2) vertical profiles of wave velocity amplitude, mean current velocity, eddy viscosity coefficient and turbulent kinetic energy with waves having a following current. To test the validity and the rationality of the present model, vertical profiles of modelled wave velocity amplitude and mean velocity were compared with corresponding experimental results available in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Observations are presented of currents, hydrography and turbulence in a jet-type tidally forced fjord in Svalbard. The fjord was ice covered at the time of the experiment in early spring 2004. Turbulence measurements were conducted by both moored instruments within the uppermost 5 m below the ice and a microstructure profiler covering 3–60 m at 75 m depth. Tidal choking at the mouth of the fjord induces a tidal jet advecting relatively warmer water past the measurement site and dominating the variability in hydrography. While there was no strong correlation with the observed hydrography or mixing and the phase of the semidiurnal tidal cycle, the mean structure in dissipation of turbulent kinetic energy, work done under the ice and the mixing in the water column correlated with the current when conditionally sampled for tidal jet events. Observed levels of dissipation of turbulent kinetic energy per unit mass, 1.1×10−7 W kg−1, and eddy diffusivity, 7.3×10−4 m2 s−1, were comparable to direct measurements at other coastal sites and shelves with rough topography and strong forcing. During spring tides, an average upward heat flux of 5 W m−2 in the under-ice boundary layer was observed. Instantaneous (1 h averaged) large heat flux events were correlated with periods of large inflow, hence elevated heat fluxes were associated with the tidal jet and its heat content. Vertical heat fluxes are derived from shear-probe measurements by employing a novel model for eddy diffusivity [Shih et al., 2005. Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. Journal of Fluid Mechanics 525, 193–214]. When compared to the direct heat flux measurements using the eddy correlation method at 5 m below the ice, the upper 4–6 m averaged heat flux estimates from the microstructure profiler agreed with the direct measurements to within 10%. During the experiment water column was stably, but weakly, stratified. Destabilizing buoyancy fluxes recorded close to the ice were absent at 5 m below the ice, and overall, turbulence production was dominated by shear. A scaling for dissipation employing production by both stress and buoyancy [Lombardo and Gregg, 1989. Similarity scaling of viscous and thermal dissipation in a convecting boundary layer. Journal of Geophysical Research 94, 6273–6284] was found to be appropriate for the under-ice boundary layer.  相似文献   

18.
《Continental Shelf Research》2006,26(12-13):1469-1480
The generation of internal waves in the partially mixed estuaries is examined. The numerical experiments consider the barotropic tidal currents interacting with isolated obstacles in an open channel. The bottom boundary layer and longitudinal salinity gradient are included. Internal lee (arrested) waves are excited when the accelerating barotropic tidal current approaches the first-mode internal wave speed. The arrested waves are amplified, and are subsequently released when the decelerating tidal current falls below the first-mode internal wave speed. The power input from the barotropic tidal energy into internal wave energy is calculated. It is on the order of 10−2 W/m2, and is comparable to the estimated interior dissipation rate. This suggests that the tidally generated internal waves could be a significant energy source for mixing in the halocline.  相似文献   

19.
AVHRR satellite imagery of the southern Mid-Atlantic Bight during May 1993 revealed a large area of cold water over the shelf break and slope that appeared to spin up into a series of southward propagating anticyclonic eddies. The eddies had diameters of 35–45 km at the surface and moved southward at about 20 cm/sec. A radial TOYO CTD (to 50m) and ADCP velocity (to 400m) transect was conducted across the southern-most of these eddies. The upper 50 meters had minimum temperatures of less than 7°C and salinities of about 33 pss, characteristics similar to cold pool waters usually found over the continental shelf. ADCP velocity data from one of the eddies revealed anticyclonic flow extending to a depth of about 250m. The transport of cold pool water by the eddies was estimated to be 0.1 to 0.2 Sv which is of the same order as the annual mean alongshore transport of shelf water in this region. The origin of the deeper water within the eddy is unlikely to be the continental shelf because the shelf break is less than 100 m. The depth and velocity profiles along the TOYO transect were consistent with the constant potential vorticity eddy model of Flierl (1979) although the source of the eddy kinetic energy is uncertain. The cause for the exodus of cold pool water from the shelf, which extended northward to at least 38°N, is unclear but must involve the establishment of an alongshore baroclinic pressure gradient against the usual southwestward shelf flow. It is possible that the intrusion of Gulf Stream waters onto the shelf near Cape Hatteras was a precursor of this off shelf transport. The southern-most eddy was marked by high biological productivity and very high oxygen supersaturation. The phytoplankton bloom detected within the exported cold pool water, located over the continental slope, suggests a mechanism whereby production fueled by nutrients derived from the shelf can be locally exported into deep water.  相似文献   

20.
Summary Following the pattern established in meteorology, a system of energy balance equations for the solar atmosphere is presented. Since both hydromagnetic and thermodynamic processes are considered, the system includes kinetic, potential, thermal and magnetic forms of energy. Ionization energy is indirectly included in the treatment. The spatial distribution of the energy forms and the processes transforming them are separated into zonal means and departures from such means in order to depict turbulent eddy effects. Where available data concerning solar processes are used in order to appraise certain of the terms which arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号