首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semidiurnal tidal currents on the outer shelf of the Mackenzie Shelf in the Beaufort Sea were found to be strongly influenced by the locally generated baroclinic tide. Two primary factors are involved in this process: (1) the sharp shelf break along the northeastern Mackenzie Shelf, promoting the generation of vigorous internal tidal waves; and (2) the proximity to critical latitudes for M2 and N2 motions locking these waves and preventing them from leaving the source region. As a result, internal tides are resonantly trapped between the shelf and critical latitudes. The physical properties and temporal variations of tidal motions were examined using current meter measurements obtained from 1987–1988 at four sites (SS1, SS2, SS3, and SS4) offshore of the shelf break at depths of ∼200 m. Each mooring had Aanderaa RCM4s positioned at ∼35 m below the surface and ∼50 m above the bottom. Complex demodulation was used to compute the envelopes (amplitude modulation) of these components. A striking difference in the variability of clockwise (CW) and counterclockwise (CCW) tidal currents was found. The CW tides are highly variable, have greater amplitude, exhibit a burst-like character associated with wind events and contain about 80% of the total energy of the semidiurnal tidal currents. In contrast, the CCW components have a more regular temporal regime with distinct monthly, fortnightly and 10-day modulation at astronomical periodicities associated with frequency differences M2–N2 (0.03629 cpd), S2–M2 (0.06773 cpd), and S2–N2 (0.10402 cpd). Significant horizontal correlation of the CW current envelopes was found only between stations near the northeast Mackenzie Shelf, indicating this to be the main area of baroclinic internal wave generation.  相似文献   

2.
This study examines connections between mean sea level (MSL) variability and diurnal and semidiurnal tidal constituent variations at 17 open-ocean and 9 continental shelf tide gauges in the western tropical Pacific Ocean, a region showing anomalous rise in MSL over the last 20 years and strong interannual variability. Detrended MSL fluctuations are correlated with detrended tidal amplitude and phase fluctuations, defined as tidal anomaly trends (TATs), to quantify the response of tidal properties to MSL variation. About 20 significant amplitude and phase TATs are found for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). Lesser constituents (O1 and S2) show trends at nearly half of all gauges. Fluctuations in MSL shift amplitudes and phases; both positive and negative responses occur. Changing overtides suggest that TATs are influenced by changing shallow water friction over the equatorial Western Pacific and the eastern coast of Australia (especially near the Great Barrier Reef). There is a strong connection between semidiurnal TATs at stations around the Solomon Islands and changes in thermocline depth, overtide generation, and the El Niño Southern Oscillation (ENSO). TATs for O1, K1, and M2 are related to each other in a manner that suggests transfer of energy from M2 to the two diurnals via resonant triad interactions; these cause major tidal variability on sub-decadal time scales, especially for M2. The response of tides to MSL variability is not only spatially complex, it is frequency dependent; therefore, short-term responses may not predict long-term behavior.  相似文献   

3.
Based on the horizontal winds measured using SKiYMET meteor wind radar during the period of June 2004–May 2007, the seasonal and interannual variability of the diurnal and semidiurnal amplitudes and phases in the mesospheric and lower thermospheric (MLT) region over a low-latitude station Trivandrum (8.5°N) are investigated. The monthly values of amplitudes and phases are calculated using a composite day analysis. The zonal and meridional diurnal tidal amplitudes exhibit both annual and semiannual oscillations. The zonal and meridional components of semidiurnal tide show a significant annual oscillation. The phase values of both diurnal and semidiurnal tides exhibit annual oscillation above 90 km. The effect of background wind in the lower atmosphere on the strength of diurnal tidal amplitudes in the MLT region is studied. The effect of diurnal tides on the background wind in the lower thermosphere is also discussed.  相似文献   

4.
The tides and tidal energetics in the Indonesian seas are simulated using a three-dimensional finite volume coastal ocean model. The high-resolution coastline-fitted model is configured to better resolve the hydrodynamic processes around the numerous barrier islands. A large model domain is adopted to minimize the uncertainty adjacent to open boundaries. The model results with elevation assimilation based on a simple nudge scheme faithfully reproduced the general features of the barotropic tides in the Indonesian Seas. The mean root-mean-square errors between the observed and simulated tidal constants are 2.3, 1.1, 2.4, and 1.5 cm for M2, S2, K1, and O1, respectively. Analysis of the model solutions indicates that the semidiurnal tides in the Indonesian Seas are primarily dominated by the Indian Ocean, whereas the diurnal tides in this region are mainly influenced by the Pacific Ocean, which is consistent with previous studies. Examinations of tidal energy transport reveal that the tidal energy for both of the simulated tidal constituents are transported from the Indian Ocean into the IS mainly through the Lombok Strait and the Timor Sea, whereas only M2 energy enters the Banda Sea and continues northward. The tidal energy dissipates the most in the passages on both sides of Timor Island, with the maximum M2 and K1 tidal energy transport reaching about 750 and 650 kW m–1, respectively. The total energy losses of the four dominant constituents in the IS are nearly 338 GW, with the M2 constituent dissipating 240.8 GW. It is also shown that the bottom dissipation rate for the M2 tide is about 1–2 order of magnitudes larger than that of the other three tidal components in the Indonesian seas.  相似文献   

5.
《Continental Shelf Research》2008,28(18):2565-2573
A numerical model is used to determine the resonant period and quality factor Q of Chesapeake Bay and explore physical mechanisms controlling the resonance response in semi-enclosed seas. At the resonant period of 2 days, the mouth-to-head amplitude gain is 1.42 and Q is 0.9, indicating that Chesapeake Bay is a highly dissipative system. The modest amplitude gain results from strong frictional dissipation in shallow water. It is found that the spatial distribution of energy dissipation varies with forcing frequency. While energy at tidal frequencies is dissipated around topographic hotspots distributed throughout the Bay, energy dissipation at subtidal frequencies is mainly concentrated in the shallow-water lower Bay. An analytic calculation shows that the bottom friction parameter is much larger in Chesapeake Bay than in other coastal systems with strong resonance response. The model-predicted amplitude gains and phase changes agree well with the observations at semidiurnal and diurnal tidal frequencies. However, the predicted amplitude gain in the resonant frequency band (34–54 h period) falls below that inferred from band-passed sea level observations. This discrepancy can be attributed to the local wind forcing which amplifies the sea level response in the upper Bay. The model is also used to show that rising sea levels associated with global warming will shift the resonance period of Chesapeake Bay closer to the diurnal tides and thus exacerbate flooding problems by causing an increase in tidal ranges.  相似文献   

6.
The harmonic relationship between the diurnal and semidiurnal tides gives rise to an elementary mathematical relationship that has intriguing consequences for secondary waves produced by non-linear interactions between the diurnal tide and planetary waves. A speculative theory is developed which predicts that, under certain conditions, these secondary waves can be amplified by non-linear interaction with the semidiurnal tide. A peculiar feature of dynamics in the MLT region above Bulgaria is the presence of strong oscillations with periods near 20 and 30 h, especially in the zonal wind component. Observational evidence from a meteor radar at Yambol, Bulgaria suggests that the 20- and 30-h signals are produced as the result of non-linear interactions of the type proposed by the novel theory.  相似文献   

7.
Analyses of hourly values of zonal and meridional wind near 95 km observed by meteor radar at Yambol (42.5°N, 26.6°E) during January 1991–June 1992 indicate the presence of planetary waves with prevailing periods of 1.5–2.5, 4–6, 9–10 and 16–18 days. About 20% of the whole power of atmospheric motions is connected with these waves, so they play an important role in the dynamics of the mesosphere-lower thermosphere (MLT) region. By dynamic spectral analysis applied to the hourly neutral wind and to the calculated hourly values of tidal amplitudes it has been demonstrated that there is considerable modulation of tidal amplitudes by planetary waves in the neutral wind, as this process is better expressed in the semidiurnal tides. The nonlinear interaction between tides and planetary waves is studied by bispectral analysis. The results of these analyses indicate again that the nonlinear interactions between semidiurnal tides and planetary waves with periods 2–20 days are stronger than those of the diurnal tides and planetary waves. A peculiar feature of dynamics in the MLT region above Bulgaria is the presence of strong oscillations with periods of 20 and 30 h, which indicate significant nonlinear coupling between them.  相似文献   

8.
Cai  Shuqun  Wu  Yuqi  Xu  Jiexin  Chen  Zhiwu  Xie  Jieshuo  He  Yinghui 《中国科学:地球科学(英文版)》2021,64(10):1674-1686
Numerous internal solitary waves(ISWs) have been observed in the southern Andaman Sea. In this study, the two-dimensional Massachusetts Institute of Technology general circulation model is applied to investigate the dynamics of ISWs and explore the effects of the bottom topography and tidal forcing on the generation and propagation of ISWs in the southern Andaman Sea. The results show that the large-amplitude depression ISWs are mainly generated via the oscillating tidal flow over the sill of the Great Channel, and the generation of ISWs is subject to the lee wave regime. The Dreadnought Bank cannot generate ISWs itself; however, it can enhance the amplitudes of eastward-propagating ISWs generated from sill A, owing to constructive interference of internal tide generation between the sill of the Great Channel and the Dreadnought Bank. The eastward-propagating ISWs generated by the eastern shallow sill near the continental shelf can propagate to the shelf, where they evolve into elevation waves because of the shallow water. Sensitivity runs show that both the semidiurnal and diurnal tides over the sill of the Great Channel can generate ISWs in this area. However, the ISWs generated by diurnal tides are much weaker than those generated by semidiurnal tides. Mixed tidal forcing has no significant effect on the generation of ISWs.  相似文献   

9.
The harmonic relationship between the diurnal and semidiurnal tides gives rise to an elementary mathematical relationship that has intriguing consequences for secondary waves produced by non-linear interactions between the diurnal tide and planetary waves. A speculative theory is developed which predicts that, under certain conditions, these secondary waves can be amplified by non-linear interaction with the semidiurnal tide. A peculiar feature of dynamics in the MLT region above Bulgaria is the presence of strong oscillations with periods near 20 and 30 h, especially in the zonal wind component. Observational evidence from a meteor radar at Yambol, Bulgaria suggests that the 20- and 30-h signals are produced as the result of non-linear interactions of the type proposed by the novel theory.  相似文献   

10.
武汉台重力潮汐长期观测结果   总被引:5,自引:1,他引:4       下载免费PDF全文
采用武汉台超导重力仪(SG C032)14年多的长期连续观测资料,研究了固体地球对二阶和三阶引潮力的响应特征,精密测定了重力潮汐参数,系统研究了最新的固体潮模型和海潮模型在中国大陆的有效性.采用最新的8个全球海潮模型计算了海潮负荷效应,从武汉台SG C032的观测中成功分离出63个2阶潮汐波群和15个3阶潮汐波群信号,3阶潮波涵盖了周日、半日和1/3日三个频段.重力潮汐观测的精度非常高,标准偏差达到1.116 nm·s-2,系统反映了非流体静力平衡、非弹性地球对2阶和3阶引潮力的响应特征.结果表明,现有的武汉国际重力潮汐基准在半日频段非常精确,但在周日频段存在比较明显的偏差,需要进一步精化.对于中国大陆的大地测量观测,固体潮可以采用Dehant等考虑地球内部介质非弹性和非流体静力平衡建立的固体潮理论模型或Xu 等基于全球SG观测建立的重力潮汐全球实验模型作为参考和改正模型,海潮负荷效应应该采用Nao99作为改正模型.  相似文献   

11.
Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45′ N), where the highest tidal velocities in spring tides were ~?1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.  相似文献   

12.
Two 24-h surveys were conducted in St. Andrew Bay, Florida, during spring and neap tides to describe the tidal and non-tidal circulation patterns and to determine the factors that affect these patterns. In particular, the effect of tidal forcing in modulating such circulation patterns was explored. Observed velocities were fitted to diurnal and semidiurnal harmonics separating tidal motions from sub-tidal motions. Residual flows were compared with an analytic model that allowed variations in the relative contributions from Coriolis acceleration and friction using the Ekman number. A solution with an Ekman number of 0.04 resembled the observations best and indicated that the hydrodynamics were governed by pressure gradient, Coriolis and friction. Locally, advective accelerations became important around headlands in sub-estuaries in the system. The consistency of the mean pattern from October to March suggests that tides play a minor role in modulating the exchange flow. Deviations from the long-term mean are mainly caused by wind-driven coastal setup and setdown.  相似文献   

13.
Incoherent internal tidal currents in the deep ocean   总被引:2,自引:0,他引:2  
Eleven months current meter observations from the deep Bay of Biscay were examined for the residual (incoherent internal tidal; icIT) signal, left after harmonic analysis using eight tidal constituents (large-scale barotropic or coherent baroclinic signal) within the semidiurnal band. This residual signal comprised 30% of the total tidal kinetic energy and, due to its flat spectral appearance, it was responsible for typically 5–7 days intermittency. Although icIT was part of the red noise internal wave band continuum, it was not attributable to instrumental noise. It consisted of quasi-harmonics at non-tidal harmonic frequencies having amplitudes larger than N2, the third largest semidiurnal tidal constituent. It is suggested that the kinetic energy at these non-tidal frequencies reflects interaction between semidiurnal tidal motions and the slowly varying background conditions.Responsible Editor: Roger Proctor  相似文献   

14.
Monthly simulations of the thermal diurnal and semidiurnal tides are compared to High-Resolution Doppler Imager (HRDI) and Wind Imaging Interferometer (WINDII) wind and temperature measurements on the Upper-Atmosphere Research Satellite (UARS). There is encouraging agreement between the observations and the linear global mechanistic tidal model results both for the diurnal and semidiurnal components in the equatorial and mid-latitude regions. This gives us the confidence to outline the first steps of an assimilative analysis/interpretation for tides, dissipation, and mean flow using a combination of model results and the global measurements from HRDI and WINDII. The sensitivity of the proposed technique to the initial guess employed to obtain a best fit to the data by tuning model parameters is discussed for the January and March 1993 cases, when the WINDII day and night measurements of the meridional winds between 90 and 110 km are used along with the daytime HRDI measurements. Several examples for the derivation of the tidal variables and decomposition of the measured winds into tidal and mean flow components using this approach are compared with previous tidal estimates and modeling results for the migrating tides. The seasonal cycle of the derived diurnal tidal amplitudes are discussed and compared with radar observation between 80 and 100 km and 40° S and 40°N.  相似文献   

15.
面向大气热力潮汐结构分析的Hough函数计算   总被引:1,自引:1,他引:0       下载免费PDF全文
作为一种刻画行星尺度大气波动基本结构的函数,Hough函数为开展有关大气潮汐全球结构的分析提供了具有物理基础的手段,它们也被作为一种数值工具应用于大气模式中以提高数值积分的效率.本文介绍了我们以拉普拉斯潮汐方程为基础,在发展求取Hough函数方面取得的进展,包括对有关计算方案和详细步骤的说明.针对39种分别具有三种主要频率,即周日、半日和1/3日,与此同时纬向波数落在[6,6]区间的潮汐成份,通过计算得到了与每一种成份对应的本征值、本征函数(Hough函数)集合.作为计算结果的示例,本文给出了针对迁移性周日潮和迁移性半日潮开展计算取得结果.这些结果说明这些函数具有正确的空间结构,与此同时还说明相关的本征值计算结果都达到了相当准确的水平.所有这些结果显示当前计算结果已经可以满足普通的应用.  相似文献   

16.
潮汐沉积物记录着一系列的潮汐周期。本文简要介绍了几种主要的现代潮汐周期,在此基础上回顾了最近十余年来国外对周期性潮汐沉积物,特别是潮汐韵律层的研究进展,系统介绍了几种从古代沉积物中识别出来的潮汐周期,包括基本潮汐(半日潮、全日潮和混合潮),大-小潮周期以及一些长期周波动等。最后对潮汐韵律层在推测地史时期地-月系的演化历史中的意义作了评述。  相似文献   

17.
Currents in the northern Bay of La Paz were examined using an 8-month Acoustic Doppler Current Profiler (ADCP) record collected in the upper 185 m of the water column during 2007. Flow variability was dominated by tidal motions, which accounted for 43% (33% diurnal, 10% semidiurnal) of the total kinetic energy. The tidal motions had a pronounced vertical structure dominated within a shallow (∼30 m thick) surface layer by intense counterclockwise (CCW) rotary S1 diurnal radiational currents that were highly coherent with the counterclockwise seabreeze. Motions within the semidiurnal frequency band were primarily associated with significant counterclockwise S2 radiational tidal currents, which were also coherent with the seabreeze. Both S1 and S2 tidal ellipses in the upper layer were aligned perpendicular to the bay entrance with mean semi-major axes of 55 and 20 cm/s, respectively. Below the surface layer, tidal currents decayed rapidly to relatively weak, clockwise rotary barotropic motions. In contrast to those for radiational harmonics, tidal ellipses of the gravitational constituents (M2, K1 and O1) were oriented cross-bay. Energy within the diurnal frequency band in the surface layer was dominated by a coherent component (barotropic, phase-locked baroclinic and radiational), which accounted for roughly 65% (59% from S1 alone) of the total diurnal kinetic energy. Of the remaining diurnal band energy, 18% was associated with an incoherent baroclinic component and 17% with a background noise component. Below 30 m depth, the corresponding estimates are 40%, 32% and 28%, respectively. The persistent, surface-intensified CCW rotary currents observed at the mooring site are assumed to be forced by strong CCW seabreeze winds in the presence of a “slippery” low-density surface layer. This response may be further augmented by topographic narrowing at the bay entrance and by the close proximity of the diurnal and inertial frequency bands in the region.  相似文献   

18.
Current meter measurements from the west coast South Island New Zealand continental slope exhibit flows with dominant time scales of between 1 and 4 weeks as well as the expected diurnal and semidiurnal tides. The alongshore Doodson filtered daily mean flow components are marginally correlated with the alongshore wind. The onshore flow components are marginally correlated with the envelope of the square of the semidiurnal and diurnal tidal flow, which is taken as a measure of energy loss from the tide.Observations from the southern flank of the Challenger Plateau, 200 km north of the continental slope observations and further offshore, also exhibit similar long-period variations. However, here the alongshore flow is more strongly correlated with alongshore wind than at the southern site.  相似文献   

19.
利用为期一年的卫星遥感温度(SABER/TIMED)资料重建了120°E子午圈内中间层和低热层大气潮汐各主要频率分量(周日、半日和8小时潮汐).这些主要频率分量随高度振幅增大,在97 km高度达到显著的振幅;其中迁移性周日潮汐在97 km高度出现极大振幅,然后随高度衰减.本文从考察迁移性成分和非迁移性成分各自在总潮汐中贡献角度出发,着重讨论了那些对形成该子午圈中97 km高度上整体潮汐扰动起控制作用的潮汐成分.结果显示,对周日和半日频率这两种潮汐而言,迁移性成分控制了它们的总体时空分布.在春分季节,迁移性周日潮的控制作用最显著,决定了赤道和两半球热带的活动中心;其中北半球副热带地区的季节变化形势与以往利用武汉(30°N,114°E)流星雷达风测量资料开展分析得到的结果是一致的;其他季节受非迁移性成分明显影响,例如,在本文关注的2005年中,夏至季节受(1,0)模、(1,-3)模和(1,-2)模的共同影响形成了从赤道向南延伸的活动中心,极值中心位于赤道附近,振幅达到了20 K以上,是全年的最大值.受迁移性成分控制,半日潮活动主要出现在两半球热带地区,北半球活动中心位于秋分季节(振幅达到13 K),南半球活动中心位于春分和夏至之间.其他季节受非迁移成分的影响,形成若干分布在两半球的活动中心.在本文关注的40°S~40°N范围内,与周日潮和半日潮相比,8小时潮汐具有显著较低的振幅;另外,虽然迁移性成分在一年中的大部分时间系统地分布在两半球热带地区,但是非迁移成分具有与迁移性成分相当或更大的振幅,在整体上控制了这种潮汐的时空分布.  相似文献   

20.
Ocean tides and resonance   总被引:1,自引:1,他引:0  
Tidal currents and surface amplitudes are calculated globally for the dominating diurnal and semidiurnal constituents using an established tidal model under a range of altered bathymetry. The purpose is to evaluate if the well-known amplification of the global tides during the Last Glacial Maximum (LGM) is related to changed propagation properties for the tidal wave or to changed damping due to removal of shelf seas. The response of the tides and tidal dissipation to future sea-level rise is also discussed. The tides in the present and LGM oceans were simulated first, followed by runs where the present day bathymetry was used but the shelf seas removed by the introduction of vertical walls or where sea level is allowed to rise. Previously reported results regarding tidal amplitudes and dissipation rates are reproduced in the control runs. The runs without shelf seas show significantly enhanced tidal amplitudes in the North Atlantic, whereas sea-level rise of 5 m above present levels show a significant shift in the amphidromic points on a local and regional scale but had a limited effect on the open ocean tides. Simulations with very large sea-level rise show a significantly decreased global tidal dissipation, whereas experiments without friction in present-day shallow water display results similar to those with no shelf seas. The results all point towards changing damping properties due to the removal of shelf seas as being the mechanism behind the LGM amplification, and they imply the importance of implementing future sea-level changes properly in tidal simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号