首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The yearly nutrient supply from land and atmosphere to the study area in SW Kattegat is 10 900 tons of N and 365 tons of P. This is only few percent of the supply from adjacent marine areas, as the yearly transport through the study area is 218 000 tons of N and 18 250 tons of P. Yearly net deposition makes up 1340 tons of N (on average 2.5 g m–2 yr–1) and 477 ton of P (on average 0.9 g m–2 yr–1). Shallow-water parts of the study area have no net deposition because of frequent (>35% of the year) resuspension. Resuspension frequency in deep water is <1% of the year. Resuspension rates, as averages for the study area, are 10–17 times higher than net deposition rates. Because of resuspension, shallow-water sediments are coarse lag deposits with small amounts of organic matter (1.1%) and nutrients (0.04% N and 0.02% P). Deep-water sediments, in contrast, are fine grained with high levels of organic matter (11.7%) and nutrients (0.43% N and 0.15% P). Laboratory studies showed that resuspension changes the diffusive sediment water fluxes of nutrients, oxygen consumption, and penetration into the sediment. Fluxes of dissolved reactive phosphate from sediment to water after resuspension were negative in organic-rich sediments (13.2% organic matter) with low porosity (56) and close to zero in coarse sediments with a low organic matter content (2.3%) and high porosity (73). Fluxes of inorganic N after resuspension were reduced to 70% and 0–20% in relation to the rates before resuspension, respectively. Received: 10 July 1995 · Accepted: 19 January 1996  相似文献   

2.
孙云明  宋金明 《地质论评》2001,47(5):527-534
海洋沉积物中的N和P随沉积物的粒度由粗到细,含量逐渐升高,而Si则降低;积物中N、P、Si的含量还随海区、输入源、季节、动力学过程及生物生产过程不同而变化.控制海洋沉积物-海水界面N、P、Si沉积、释放及循环的因素,包括有机质和溶解氧的浓度、有机质中C、N、P、Si的相对比例、沉积物-海水界面附近的氧化还原环境、生物扰动、温度、水深、pH值、不同形态S的浓度、金属离子以及水动力条件等.一般其综合作用的表现是,沉积物-海水界面之间NH+4、PO3-4和Si(OH)4从沉积物向上覆水扩散转移,而硝酸盐和亚硝酸盐的通量方向相反,通量的大小随着海区的不同差别较大.  相似文献   

3.
Surveys were conducted in April and June 1995 to quantify the uptake of dissolved nutrients in a highly turbid estuary (the Humber, United Kingdom) and to determine the factors controlling nutrient uptake rates. A combination of isotope labelling methods were used in conjunction with on-deck incubation techniques to estimate the uptake of dissolved nutrients (PO4 3?, NH4 +, NO3 ?, and urea) in surface samples collected from coastal waters. Similarly, isotope labelling and laboratory incubgation techniques were employed to estimate dissolved nitrogen uptake (NH4 +, NO3 ?, and urea) in surface samples collected from the estuary mouth. Nutrient uptake rates were at the low end of ranges for coastal and estuarine environments reported in the literature. Concentrations of chlorophyll and the availability of photosynthetically active radiation were identified as potentially important factors controlling the uptake rates of nutrients. Uptake rates of dissolved nitrogen in the Humber mouth appeared to be related to the location of smapling sites. Depletion rates of dissolved nutrients in situ were estimated on the basis of integrated water column nutrient uptake rates and indicated assimilation of up to 16% of nutrients in the entire water column. Estimated depletion rates did not indicate preferential loss of any of the nutrient species investigated.  相似文献   

4.
The distribution of nutrients (N, P, Si, C) in the Wujiang River surface water was studied during the high-flow and low-flow periods in 2002. The results showed that nitrate nitrogen (NO3-N) is the main form of dissolved inorganic nitrogen (DIN) in the Wujiang River Basin. It accounts for about 90% of DIN. The average NO3-N concentrations in the mainstream are 147.5 μM in the high-flow period and 158.0 μM in the low-flow period, respectively. The average concentrations of total phosphorus (TP) are 6.43 μM in the high-flow period and 4.18 μM in the low-flow period, respectively. Of the various forms of phosphorus, particulate phosphorus (PP) has the highest percentage ( 62.9%) of TP in the high-flow period. In the low-flow period, however, phosphate is the main form of phosphorus, which accounts for 49% of TP. With the Wujiangdu Reservoir as the boundary, the concentrations of DIN and phosphorus in the upper reaches are different from those in the lower reaches of the Wujiang River. As a whole, the concentrations of DIN and phosphorus are both higher in the low-flow period than in the high-flow period. The spatial and temporal variations of DIN and phosphorus concentrations suggested that DIN and phosphorus come from agricultural and domestic wastewaters and groundwaters and that the Wujiangdu Reservoir has an important impact on the concentrations and distribution of DIN and phosphorus in the Wujiang River. The distribution patterns of dissolved silica (DSi) and dissolved organic carbon (DOC) are similar. Both of them maintain no change in the whole course of the river and their concentrations (with the exception of the reservoir itself) are higher in the high-flow period than in the low-flow period. The average DSi and DOC concentrations in the mainstream are 85.4, 84.6 μM in the high-flow period and 60.8, 53.9 μM in the low-flow period, respectively. The concentrations of nutrients in most of the major tributaries are lower than in the mainstream. This suggested that the contributions of most tributaries are relatively small but importance should be attached to the influence of some individual tributaries such as the Qingshuijiang River and the Weng'an River on the mainstream.  相似文献   

5.
Mudflats and associated mangroves are most important ecosystems of tropical coastal regions. Mangroves play a very important role in maintaining the environmental balance; thus in addition to mangrove reforestation and restoration, afforestation has also been practiced. We studied distribution of sediment components (sand, silt, clay) organic carbon (OC), heavy metals (Fe, Mn, Cu, Zn, Cr and Co) and pH in six cores collected from one of the largest mudflats of Mandovi estuary, west coast of India. The temporal distribution patterns of these proxies suggested that past changes in tidal energy conditions, fresh water inflow and anthropogenic activities over the last few decades, together helped in development of a middle tidal flat in this estuary. In cores collected from the mangroves, trapping and deposition of finer particles and organic matter were enhanced by a complex aerial mangrove root system in recent years. Mangroves were, therefore, suggested to enhance the buildup of mudflats in Mandovi estuary. Cores collected from mudflats also exhibited higher deposition of finer particles and organic matter (except MF2) in recent years, suggesting maturity and greater stability of the entire mudflat in recent years. Middle tidal flats (mudflats) of Mandovi estuary may, therefore, prove to be suitable substrates for mangrove proliferation in the near future. Finer sediments deposited mainly from mining activities in recent years exhibited lower pH and higher metal content. Organisms dwelling in these recently deposited sediments are, therefore, at higher risk of bioaccumulation and metal toxicity.  相似文献   

6.
Nutrient distribution and fluxes into and from dams and into coastal waters from three rivers (NE Algeria) were assessed during a one-year period in three stations for each river: at the entrance and the exit of dam and at the outlet. The main characteristics of the rivers were the high levels of NH4 and PO4, even in dam entrances, contrarily to SiO4 levels that are still low upstream the dams. From the inorganic nutrient incoming fluxes, the dams trapped annually 42 to 93%, depending on the nutrient, but released in great levels dissolved organic forms at their exits. At catchment scale, dissolved nitrogen loadings reach 338 kg/km2/yr, in which the organic fraction forms up to 34%; while those of dissolved phosphorus reach 172 kg/km2/yr, with a great organic fraction. The Si:N ratios decreased while N:P ratios increased at river outlets, indicating large inputs of N over P in the lower catchments.  相似文献   

7.
Chilka lake, the largest coastal lagoon of Asia is one of the most dynamic ecosystems along the Indian coast. Historically the lagoon has undergone a considerable reduction in surface area due, in part, to input from natural processes but mostly due to human activities. The purpose of this investigation is to document the heavy metals' affinity for specific geochemical phases in the recently deposited sediments in the lagoon. Thirty-three samples were collected and analyzed for different geochemical phases of Fe, Mn, Cu, Cr, Ni, Pb, and Zn utilizing a sequential extraction scheme. In the nonlithogenous fraction, the exchangeable fraction was not geochemically significant, having <2% of the total metal concentration for all the elements. However, the carbonate fraction contained the following percentages of the total concentration: <1% Fe, 13% Mn, 6% Cu, 4% Cr, 8% Ni, 13% Pb, and 12% Zn, suggesting the detrital origin of the sediments. Reducible and organic matter-bound fractions were the significant phases in the nonlithogenous fraction, containing 9% Fe, 16% Mn, 15% Cu, 16% Cr, 16% Ni, 14% Pb, and 14% Zn in the former and 4% Fe, 3% Mn, 17% Cu, 3% Cr, 14% Ni, 15% Pb, and 14% Zn in the latter. The phenomenon has been attributed to the scavenging affinity of Fe-Mn oxides and affinity for sorption into organic matter of the lagoon sediments. The lithogenous, residual fraction generally considered as a guide for natural background values was determined to contain 87% Fe, 67% Mn, 61% Cu, 77% Cr, 61.3% Ni, 56% Pb, and 60% Zn of the total concentrations.  相似文献   

8.
Long-term interdisciplinary studies of the Rhode River estuary and its watershed in the mid-Atlantic coastal plain of North America have measured fluxes of nitrogen and phosphorus fractions through the hydrologically-linked ecosystems of this landscape. These ecosystems are upland forest, cropland, and pasture; streamside riparian forests; floodplain swamps; tidal brackish marshes and mudflats; and an estuarine embayment. Croplands discharged far more nitrogen per hectare in runoff than did forests and pastures. However, riparian deciduous hardwood forest bordering the cropland removed over 80 percent of the nitrate and total phosphorus in overland flows and about 85 percent of the nitrate in shallow groundwater drainage from cropland. Nevertheless, nutrient discharges from riparian forests downslope from croplands still exceeded discharges from pastures and other forests. The atomic ratio of nitrogen to phosphorus discharged from the watersheds into the estuary was about 9 for total nutrients and 6 for inorganic nutrient fractions. Such a low N:P ratio would promote nitrogen rather than phosphorus limitation of phytoplankton growth in the estuary. Estuarine tidal marshes trapped particulate nutrients and released dissolved nutrients. Subtidal mudflats in the upper estuary trapped particulate P, released dissolved phosphate, and consumed nitrate. This resulted in a decrease in the ratio of dissolved inorganic N:P in the estuary. However, the upper estuary was a major sink for total phosphorus due to sediment accretion in the subtidal area. Bulk precipitation accounted for 31 percent of the total nongaseous nitrogen influx to the landscape, while farming accounted for 69 percent. Forty-six percent of the total non-gaseous nitrogen influx was removed as farm products, 53 percent either accumulated in the watershed or was lost in gaseous forms, and 1 percent entered the Rhode River. Of the total phosphorus influx to the landscape, 7 percent was from bulk precipitation and 93 percent was from farming. Forty-five percent of the total phosphorus influx was removed as farm products, 48 percent accumulated in the watershed, and 7 percent entered the Rhode River. These nitrogen and phosphorus discharges into the Rhode River, although a small fraction of total loadings to the watershed, were large enough to cause seriously overenriched conditions in the upper estuary.  相似文献   

9.
As part of the National Oceanic and Atmospheric Administration’s (NOAA) Nutrient Enhanced Coastal Ocean Productivity program, we have conducted four research cruises, July–August 1990, March 1991, September 1991, and May 1992, in the Mississippi River plume and adjacent shelf regions. Over this time period, photic-zone-integrated primary production varied significantly in both the river plume and shelf study regions, with greatest variability observed in the river plume region. In the river plume and the adjacent shelf, highest production occurred during July–August 1990 (8.17 g C m?2 d?1 for the plume and 1.89–3.02 g C m?2 d?1 for the shelf) and the lowest during March 1991 (0.40–0.69 g C m?2 d?1 for the plume and 0.12–0.45 g C m?2 d?1 for the shelf). The vertical export of POC from the euphotic zone, determined with free-floating MULTITRAP sediment trap systems, also varied temporally in both study regions, with highest values occurring in May 1992 (1.80±0.04 g C m?2 d?1 for the plume and 0.40±0.02 g C m?2 d?1 for the shelf) and the lowest values occurring during July–August 1990 (0.29±0.02 g C m?2 d?1 for the plume and 0.18±0.01 g C m?2 d?1 for the shelf). The fraction of production exported out of the photic zone was highly variable and was dependent, in part, on phytoplankton species composition and on the grazing activities of microzooplankton and mesozooplankton. The lowest ratio of export to production coincided with the time when production was greated and the highest ratios occurred when production was the lowest.  相似文献   

10.
As part of a larger regional research program “KarstEAU”, the authors have applied electrical resistivity tomography (ERT) techniques to characterize heterogeneities in the Port-Miou coastal karst aquifer (Cassis, SE France). Field surveys were carried out on intensely fractured and karstified Urgonian carbonates. Extensive research has characterized macro- and micro-scale geology of the Port-Miou area and particularly underground water-filled conduits and fault/fracture and karst systems within a former quarry. The authors applied 2D ERT along two surface profiles of length 420 and 595 m to test capability for delineating subsurface conduits and possibly relationship between conduit and fault/fracture/karst orientation; and 3D ERT with a dense 120 electrode array at 1 m spacing (11 × 10 m) was applied over an area of the quarry that had been profiled using 3D georadar and which has had intensive nearby structural geological interpretation. The 2D profiling imaged several underground conduits at depths to >50 m below ground surface and below sea level, including possibly the main Port Miou submarine spring and smaller springs. The 2D profiling within the quarry provided a better understanding of the connectivity between major fractures and faults on the quarry walls and secondary springs along the coast supporting flow of the secondary springs along interpreted fracture orientations. In addition, 2D inversion-derived conductivity models indicate that high resistivity zones above sea-level are associated with non-saturated zones and low resistivity anomalies in the non-saturated zone are associated with residual clays in paleokarsts. A partitioned lower resistivity zone below sea-level can be associated with a higher porosity/permeability zone with fractures and karstic features. Inversion models of the dense 3D ERT data indicate a higher resistivity volume within the larger surveyed block. The survey characterized the non-saturated zone and the ERT resistivities are correlated with karst features interpreted by 3D georadar and visible in the inferior wall of the quarry.  相似文献   

11.
This study reports the impact of hydrological conditions on salinisation and nitrate concentrations of a coastal aquifer located at the Mediterranean Sea, southern Spain. Eighty-two samples of ground- and surface water taken during two extreme hydrological events between 1994 and 1996 at 25 different wells were evaluated with regard to hydrochemistry, focusing on nitrate concentrations and salinisation, which constitute the main hazard of this aquifer. Furthermore, hydrochemical data were analysed by principal component analysis (PCA). Additionally, in 2007 13 ground- and surface water samples taken at 12 different locations were analysed for stable isotopes of D/18O, and one sample was analysed for 15N. Since 1993 until present saltwater intrusion was observed only during dry hydrological conditions in 1994; it showed an irregular salinisation pattern probably related to locally elevated hydraulic conductivities. Nitrate concentrations increase significantly during wet hydrologic conditions owing to uptake of nitrate by rising groundwater. Stable isotopes of groundwater reveal an Atlantic origin of the precipitation that recharges the aquifer and a minor amount of groundwater recharge by the water coming from the La Viñuela reservoir, which is used for irrigation over the aquifer. 15N isotopes point to a considerable input of nitrates derived from organic fertilisers.  相似文献   

12.
The Si, Al LII, III and OKα emission and quantum yield spectra were obtained for 24 silicates. It was found that in minerals of a homogeneous anion composition the Si LII, III line has double-humped structure, and when in addition to SiO 4 4? ions of other composition (BeO 4 6? , AlO 4 5? etc.) are present it has triple-humped structure. The process of crystal-glass transition was studied by X-ray spectroscopy. The result is that in spite of the original form of the Si LII, III line of the mineral this line changes its structure in glass and exhibits a typical double-humped structure. The CNDO/2 approach was used to calculate the electronic structure of basic structural groups of silicates from SiO 4 4? to Si5O 16 12? by replacing one or two of the Si atoms by Be, B, Al and P. A qualitative interpretation of the X-ray spectra is presented.  相似文献   

13.
The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10–15 m) in the Cenomanian rock (calcareous–marl), which is characterised by an important permeability from cracks. The soil is sand–clay characterized by a weak coefficient of retention.The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer.To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l−1, chemical oxygen demand = 1000 mg l−1, iron = 23 000 μg l−1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm−1 in electric conductivity, 1620 and 1000 mg l−1 respectively in chlorides and sulfate (), 15–25 μg l−1 in cadmium, and 60–100 μg l−1 in chromium. These concentrations widely exceed the standard values for potable water.Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.  相似文献   

14.
Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.  相似文献   

15.
Bojorquez Lagoon (BL), located on the Mexican Caribbean, has received sewage and dredging impacts as a result of tourism development. The lagoon supports a high diversity of primary producers compared to sheltered adjacent lagoons dominated byThalassia testudinum communities. The Diurnal Curve Method (Odum and Hoskin 1958) was used to measure community metabolism and assess eutrophication in BL by comparing it to the nonimpacted lagoons and to other systems studied with this method. Dissolved oxygen community input to the water column in BL ranged between 8.3 g O2 m?2 d?1 and 41.5 g O2 m?2 d?1 during 1985 and 1986, and averaged 17.1, whereas dissolved oxygen community consumption ranged from 6.4 g O2 m?2 d?1 during 1985 and 1986, and averaged 17.1, whereas dissolved oxygen community consumption ranged from 6.4 g O2 m?2 d?1 to 37.6 g O2 m?2 d?1 and averaged 15.2. These values are higher than those found for the adjacent lagoons and similar coastal lagoons, and are similar to results from other lagoons with sewage or seafood waste discharge. Net flux of oxygen from the community to the water column averaged 1.9 g O2 m?2 d?1 and ranged from ?9.8 g O2 m?2 d?1 to 8.1 g O2 m?2 d?1. These values are low compared to the adjacent lagoons, and close to zero, as in dystrophic environments. Primary productivity, as estimated by oxygen input, increased in BL during the period of study, indicating that eutrophication is proceeding, but the lagoon has not reached yet a level of “critical eutrophication” as defined by Mee (1988).  相似文献   

16.
Estuaries provide nursery habitat for juvenile stages of several commercial decapod crustaceans worldwide, and those in the Northeastern Pacific are viewed as providing this function for Dungeness crab,Cancer magister. It is difficult to ascertain the degree to which such estuarine production of juveniles eventually contributes to coastal adult populations and fisheries since there are no direct surveys of adult abundance. As other authors have done, we used fishery landings data to compute the long-term average contribution of 1 + juvenile crab populations reared in estuaries to future coastal fisheries. We focused on Oregon and Washington states, but grouped landings in two large geographic zones by combining fishery ports as adjacent to Large Estuarine Zones (LEZ; Grays Harbor and Willapa Bay, Washington, and both sides of the Columbia River) and Small Estuarine Zones (SEZ; all other ports in Oregon). Mortality estimates were used to reduce 1 + crab abundance to surviving legal males, and portrayed as percent of the fisheries. Trends in the SEZ indicate that an average of only about 5–7% of estuarine production adds to the coastal adult population and contributes about $0.7 million to the fishery. The contribution is 25–30% in the LEZ (but may be higher since interannual density varies up to 5 times) and is worth about $3.9 million based on present ex-vessel value. Analyses of crab distribution and density indicate that the majority of an estuarine population (50–80%) is located in lower side channels (LSC) in spring and summer where temperature is higher and prey within and on adjacent intertidal flats is high. The potential average dollar value of equivalent legal male crab produced from the juvenile population is about $180 ha?1 in LSC (but $280 ha?1 in Grays Harbor where long-term density is highest), and lower in other estuarine habitats ($50–100 ha?1). Estuarine juvenile production provides a relatively stable source of recruits to coastal adult populations, and large systems in the LEZ are important nurseries. Since direct coastal settlement of larvae does occur but is highly variable, the estuarine contribution may be especially important when physical forcing or unusual events lead to low survival of the coastal 0+ cohort. An unusually long period of very low landings in the LEZ from 1981–1987 is interpreted in light of the Mount St. Helens eruption (1980) and subsequent transport and deposition of very fine silt fractions over much of the LEZ nearshore shelf that may have adversely affected several year classes of small, early benthic phase juveniles at that time.  相似文献   

17.
The complexity of habitat structure created by aquatic vegetation is an important factor determining the diversity and composition of soft-sediment coastal communities. The introduction of estuarine organisms, such as oysters or other forms of aquaculture, that compete with existing forms of habitat structure, such as seagrass, may affect the availability of important habitat refugia and foraging resources for mobile estuarine fish and decapods. Fish and invertebrate communities were compared between adjacent patches of native seagrass (Zostera marina), nonnative cultured oyster (Crassostrea gigas), and unvegetated mudflat within a northeastern Pacific estuary. The composition of epibenthic meiofauna and small macrofaunal organisms, including known prey of fish and decapods, was significantly related to habitat type. Densities of these epifauna were significantly higher in structured habitat compared to unstructured mudflat. Benthic invertebrate densities were highest in seagrass. Since oyster aquaculture may provide a structural substitute for seagrass being associated with increased density and altered composition of fish and decapod prey resources relative to mudflat, it was hypothesized that this habitat might also alter habitat preferences of foraging fish and decapods. The species composition of fish and decapods was more strongly related to location within the estuary than to habitat, and fish and decapod species composition responded on a larger landscape scale than invertebrate assemblages. Fish and decapod species richness and the size of ecologically and commercially important species, such as Dungeness crab (Cancer magister), English sole (Parophrys vetulus), or lingcod (Ophiodon elongatus), were not significantly related to habitat type.  相似文献   

18.
The Casamance estuary, on the coast of Senegal, is an inverse hypersaline estuary: salinity increases landward, and dry season salinity values are up to 172 psu due to the evaporation of seawater. Dissolved inorganic carbon (DIC) concentrations decreased landward as a negative linear function of salinity. Thermodynamic modelling and the absence of CaCO3 in the sediments indicate that this loss of DIC was not due to calcite precipitation in the main water body. The innermost, almost landlocked, waters contained high phytoplankton biomass (50–300 μg chl I?1) and high concentrations of allochthonous dissolved organic carbon. Photosynthetic uptake of DIC and subsequent particulate organic carbon sedimentation is proposed as hypothetical explanation of the relationship between DIC and salinity; localized overheating in shallow waters might also be involved.  相似文献   

19.
Suspended matter (SM) from the Nyong basin (Cameroon, Africa), a tropical watershed, was collected by tangential flow ultrafiltration to separate particulate (>0.45 μm) and colloidal (<0.45 μm; >20 kDa) fractions. In this basin, two distinctive systems in a selected small catchment (Nsimi–Zoétélé) of the Nyong river basin have been considered: (i) colourless water (groundwater and spring) with a low suspended load (<3 mg/l) and a low total organic carbon content (TOC<1 mg/l) and (ii) coloured water (Mengong brook and Nyong river), which is organic rich (TOC>10 mg/l) and contains higher amounts of SM (10–20 mg/l) than the colourless water. Freeze-dried samples of SM have been analysed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), electron paramagnetic resonance spectroscopy (EPR), and visible diffuse reflectance spectroscopy (DRS).

Colourless water mainly contains mineral phases, such as poorly ordered kaolinite, plus quartz and goethite in the particulate fraction, and euhedral kaolinite plus amorphous iron oxyhydroxides in the colloidal fraction. In contrast, the SM in coloured water is mainly organic in nature. The mineral phases in the particulate fraction are similar to those from clear water, but with additional phytoliths and diatom frustules composed of biogenic opal. In the colloidal fraction, complexation of Fe3+ and Mn2+ with organic matter is evidenced by EPR, together with significant occurrence of Fe oxyhydroxides associated with organic matter.

The sites of Al, Si, Fe, Mn in colloidal fractions derived from spectroscopic analyses are discussed with reference to chemical analyses performed by inductively coupled plasma mass spectrometry. Most of the observed solid phases or species correspond to those expected from published thermodynamic calculations for the same hydrosystem, except the colloidal iron oxyhydroxides in the coloured water. The presence of such iron phases is emphasised since they are expected to have large sorption capacities for numerous trace elements.

The crystal chemistry of SM is used to discuss the origin of the mineral particles transported from the soil to the main rivers in terms of mechanical and chemical erosion processes.  相似文献   


20.
In this study, hydrogeologic and hydrochemical information from the Mersin-Erdemli groundwater system were integrated and used to determine the main factors and mechanisms controlling the chemistry of groundwaters in the area and anthropogenic factors presently affecting them. The PHREEQC geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into four categories: (1) silicate weathering reactions; (2) dissolution of salts; (3) precipitation of calcite, amorphous silica and kaolinite; (4) ion exchange. As determined by multivariate statistical analysis, anthropogenic factors show seasonality in the area where most contaminated waters related to fertilizer and fungicide applications that occur during early summer season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号