共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
VOCs in Ground Water Influenced by Large Scale Withdrawals 总被引:1,自引:0,他引:1
3.
4.
5.
6.
Gregg W. Bryden William R. Mabey Keith M. Robine 《Ground Water Monitoring & Remediation》1986,6(2):67-72
In this paper, we relate recent developments in ground water sampling techniques to the practical application of sampling for toxic contaminants in ground water. We address the choices that must be made in choosing equipment for a particular project by going through a step-by-step procedure for collecting a ground water sample from a typical monitoring well. Ground water sampling topics that are discussed include: choice of equipment for purging and sampling a well, monitoring for purged ground water indicators and quality assurance/quality control. 相似文献
7.
Variations in concentrations of trichloroethylene and related compounds in ground water obtained from seven ground water samplers were used to compare the performance of three submersible pumps, a centrifugal pump, two peristaltic pumps, and a bailer. Two- and 4-inch diameter submersible pumps and a centrifugal pump produced samples whose trichloroethylene concentrations, on the average, did not differ significantly from each other. Ground water samples collected by using a peristaltic pump and silicone tubing had significantly lower trichloroethylene concentrations than samples from the submersible pumps. Concentrations of 1,2-dichloroethylene and trichloroethylene in ground water samples collected by using a bailer were indistinguishable from those in samples taken by a submersible pump when the concentrations were as much as 96 and 76 micrograms per liter, respectively, but were 15 and 12 percent lower when concentrations were as low as 29 and 23 micrograms per liter, respectively. Tests of different configurations of sampler placement in observation wells indicate that pump placement, rate of pumping, duration of pumping, and the uniformity of the vertical and lateral distribution of trichloroethylene in ground water near the well screen have a potentially significant influence on trichloroethylene concentrations in ground water samples and that these factors can have a greater effect than the type of sampler used. 相似文献
8.
Lucas A. Hellerich Matthew A. Poneiera Nikolaos P. Nikolaidis Barth F. Smets Gregory M. Dobbs 《Ground Water Monitoring & Remediation》2003,23(3):74-84
The natural attenuation behavior of a ground water contaminant plume containing chromium and chlorinated ethenes in glaciated sediments was assessed using traditional and nontraditional methods. The mixed waste is transported through and attenuated within an estuarine influenced ground water aquifer of spatially varying redox character and organic carbon content. Contaminant fate and speciation were assessed as a function of geochemical conditions. Total, speciation-based, and sequential chemical extraction analyses were performed to determine contaminant partitioning and the redox capacity of the aquifer. Chromium speciation and partitioning were correlated with the reductive capacity and redox conditions of the aquifer sediments spatially distributed within the aquifer. Reductive dechlorination and partitioning of chlorinated ethenes were correlated with the organic carbon content and redox conditions of the aquifer sediments. The data showed that sharp redox gradients existed within the aquifer. Active reduction and retardation of both chromium and chlorinated ethenes was exhibited. The aqueous hexavalent chromium concentrations decreased to near nondetect levels in the vicinity of the receptor, whereas degradation products of higher-order chlorinated ethenes increased as a fraction of the total chlorinated ethene concentrations along the length of the plume. The potential for competition for reducing power under specific cases within the aquifer was suggested by the data, highlighting the need to include contaminant interactions in natural attenuation assessments. 相似文献
9.
10.
11.
12.
Frederick N. Robertson 《Ground water》1975,13(6):516-527
13.
14.
Dawn A. Zemo 《Ground Water Monitoring & Remediation》2009,29(3):77-83
This article provides actual site data that confirm that turbid ground water samples collected from within the smear zone at petroleum release sites can be significantly biased high by the inclusion of a nondissolved component that is an artifact of the sampling process. Side-by-side comparisons show that reducing sample turbidity can result in significant reductions of reported concentrations for the ground water samples and that the lower turbidity results are more representative of the petroleum actually dissolved in the ground water. Depending on site-specific factors, ground water sample turbidity can be reduced by four field-based and two laboratory-based methods. These methods should be used routinely at sites where turbid samples with a nondissolved component are being collected. 相似文献
15.
Potential for Solute Retardation on Monitoring Well Sand Packs and Its Effect on Purging Requirements for Ground Water Sampling 总被引:1,自引:0,他引:1
Monitoring well sand packs are theoretically capable of retarding metal ions and organic contaminants. If this retardation does indeed occur it may have a significant effect on the purging requirements of newly installed monitoring wells. Calculations based on mass balance and retardation concepts demonstrate that if common guidelines for well purging are followed, contaminants may not be detected or may be detected in lower concentrations than are actually present in the ground water. This problem is greatest in relatively shallow wells installed in low to moderate permeability materials. In most cases, the effect of solute retardation in the sand pack can be avoided simply by additional purging prior to the first sampling of the monitoring well. Common purging guidelines can then be applied to subsequent samplings. The methodology outlined in this paper can be used to calculate the purging requirements of existing monitoring wells or it may be applied to alternative monitoring well designs to test which will require the smallest volume of purged water. 相似文献
16.
《Ground Water Monitoring & Remediation》2008,28(2):60-67
Domestic water wells are routinely subjected to in situ chemical disinfection treatments to control nuisance or pathogenic bacteria. Most treatments are chlorine based and presumably cause strongly oxidizing conditions in the wellbore. Water resource managers in Wisconsin were concerned that such treatments might facilitate release of arsenic from sulfide minerals disseminated within a confined sandstone aquifer. To test this hypothesis, a well was subjected to four disinfection treatments over 9 months time. The first treatment consisted of routine pumping of the well without chemical disinfection; three subsequent treatments included chlorine disinfection and pumping. Pretreatment arsenic concentrations in well water ranged from 7.4 to 18 μg/L. Elevated arsenic concentrations up to 57 μg/L in the chemical treatment solutions purged from the well are attributed to the disintegration or dissolution of biofilms or scale. Following each of the four treatments, arsenic concentrations decreased to less than 10 μg/L during a period of pumping. Arsenic concentrations generally returned to pretreatment levels under stagnant, nonpumping conditions imposed following each treatment. Populations of iron-oxidizing, heterotrophic, and sulfate-reducing bacteria decreased following chemical treatments but were never fully eradicated from the well. Strongly oxidizing conditions were induced by the chlorine-based disinfections, but the treatments did not result in sustained increases in well water arsenic. Results suggest that disruption of biofilm and mineral deposits in the well and the water distribution system in tandem with chlorine disinfection can improve water quality in this setting. 相似文献
17.
A suction side sample collector (SSSC) is a contrivance installed hydraulically ahead of the intake port of a pumping device. This paper describes construction and operational details of SSSCs fitted to a submersible pump with packer for use in a 6-inch cased borehole, an air lift pump with packer for use in a 1-inch or 2.5-inch cased borehole, a bladder pump for use in a casing of 2-inch or greater diameter, and a jet pump with packer for use in a 2-inch cased borehole.
Each form of SSSC has been thoroughly tested in ground water quality sampling for volatile organic chemicals. Comparative data for samples collected with the SSSCs and conventional sample collecting gear are presented. The SSSC is demonstrated to be superior to other methods of collecting volatile organic chemical samples owing to its freedom from contamination by the pump delivery line and to its mode of collecting the sample from a position in the well remote from disturbance by the pumping technique.
SSSCs are conveniently decontaminated, easily transported, and can be used to deliver samples to the laboratory while still at formation pressure. The air-lift pumps, described in this paper for use with SSSCs in 1- and 2.5-inch casings, have pumping capacities greater than obtained by other methods that can operate in these small casings. Discharge rates of up to 2 gpm are routinely achieved with the 1-inch model and higher rates are common With the 2.5-inch model. The use of packers with these pumps reduces the time needed to replace the water in the casing with fresh water from the formation. 相似文献
Each form of SSSC has been thoroughly tested in ground water quality sampling for volatile organic chemicals. Comparative data for samples collected with the SSSCs and conventional sample collecting gear are presented. The SSSC is demonstrated to be superior to other methods of collecting volatile organic chemical samples owing to its freedom from contamination by the pump delivery line and to its mode of collecting the sample from a position in the well remote from disturbance by the pumping technique.
SSSCs are conveniently decontaminated, easily transported, and can be used to deliver samples to the laboratory while still at formation pressure. The air-lift pumps, described in this paper for use with SSSCs in 1- and 2.5-inch casings, have pumping capacities greater than obtained by other methods that can operate in these small casings. Discharge rates of up to 2 gpm are routinely achieved with the 1-inch model and higher rates are common With the 2.5-inch model. The use of packers with these pumps reduces the time needed to replace the water in the casing with fresh water from the formation. 相似文献
18.
《Ground Water Monitoring & Remediation》2000,20(1):86-93
A previous field demonstration project on nitrate-based bioremediation of a fuel-contaminated aquifer used short-screened clustered well points in addition to shallow (10 foot), conventional monitoring wells to monitor the progress of remediation during surface application of recharge. These well systems were placed in the center and at one edge of each of two treatment cells. One cell received recharge amended with nitrate (nitrate cell), and the other received unamended recharge (control cell). Data from the clustered well points were averaged to provide a mean estimate for comparison with the associated conventional monitoring well.
Conservative tracer profiles were similar for each of the four systems, with better fits obtained for well systems located at the edge of the treatment cells. However, aromatic hydrocarbon and electron acceptor profiles varied greatly for the two center well systems, with the conventional monitoring well data suggesting that remediation was proceeding at a much more rapid rate than indicated by the cluster well points. Later tests with an electromagnetic borehole flowmeter demonstrated a significant vertical flow through the well-bore of the conventional monitoring well under simulated operating conditions. This created an artifact during sampling, thought to arise from preferential flow of recharge water from the water table to deeper portions of the contaminated zone resulting in several effects, including an actual decreased residence time of water sampled by the conventional well. These data provide additional evidence that conventional monitoring wells may be inadequate for monitoring remediation in the presence of significant vertical hydraulic gradients, even for fairly shallow homogeneous aquifers. 相似文献
Conservative tracer profiles were similar for each of the four systems, with better fits obtained for well systems located at the edge of the treatment cells. However, aromatic hydrocarbon and electron acceptor profiles varied greatly for the two center well systems, with the conventional monitoring well data suggesting that remediation was proceeding at a much more rapid rate than indicated by the cluster well points. Later tests with an electromagnetic borehole flowmeter demonstrated a significant vertical flow through the well-bore of the conventional monitoring well under simulated operating conditions. This created an artifact during sampling, thought to arise from preferential flow of recharge water from the water table to deeper portions of the contaminated zone resulting in several effects, including an actual decreased residence time of water sampled by the conventional well. These data provide additional evidence that conventional monitoring wells may be inadequate for monitoring remediation in the presence of significant vertical hydraulic gradients, even for fairly shallow homogeneous aquifers. 相似文献
19.
James T. Mickam Benjamin S. Levy George W. Lee Jr. 《Ground Water Monitoring & Remediation》1984,4(4):167-171
Ground water flow in karst terranes generally occurs in the solution channels of carbonate aquifers. A hydrogeologist may utilize borehole geophysical methods to identify these solution channels in aquifers. Two specific methods that are applicable in karst terrains are:
1. Natural gamma ray logging
2. Borehole caliper logging.
Gamma ray logging can detect the presence of inter-bedded strata in the main limestone unit, such as shale, which emit high levels of gamma radiation. Gamma ray logging can also detect clay deposits in solution channels that may act to restrict the flow of ground water. The areal extent of these rock strata or clay-filled solution channels can be determined when gamma ray logs are conducted at several borehole locations across the site of investigation.
Borehole caliper logging can be employed to determine the presences of solution channels within the aquifer when penetrated by a borehole. In addition, since shale layers and clay filling are less resistant than the surrounding limestone, the caliper log may detect both the presence and the thickness of shale or clay layers in the aquifer.
Gamma ray logs can be used in conjunction with caliper logs to provide data on the stratigraphic location and thickness of solution channels and clay and shale layers within a limestone aquifer. This information is valuable to the hydrogeologist performing investigations at sites located in limestone terranes because ground water flow preferentially occurs along solution channels. 相似文献
1. Natural gamma ray logging
2. Borehole caliper logging.
Gamma ray logging can detect the presence of inter-bedded strata in the main limestone unit, such as shale, which emit high levels of gamma radiation. Gamma ray logging can also detect clay deposits in solution channels that may act to restrict the flow of ground water. The areal extent of these rock strata or clay-filled solution channels can be determined when gamma ray logs are conducted at several borehole locations across the site of investigation.
Borehole caliper logging can be employed to determine the presences of solution channels within the aquifer when penetrated by a borehole. In addition, since shale layers and clay filling are less resistant than the surrounding limestone, the caliper log may detect both the presence and the thickness of shale or clay layers in the aquifer.
Gamma ray logs can be used in conjunction with caliper logs to provide data on the stratigraphic location and thickness of solution channels and clay and shale layers within a limestone aquifer. This information is valuable to the hydrogeologist performing investigations at sites located in limestone terranes because ground water flow preferentially occurs along solution channels. 相似文献
20.
《Ground Water Monitoring & Remediation》2000,20(1):56-68
In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymeric tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption.
The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs from the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105°C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE. 相似文献
The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs from the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105°C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE. 相似文献