首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A Pliocene oil shale (Pula, Hungary), a C3 plant Triticum aestivum and a C4 plant Zea mays were compared using isotopic composition of bulk organic matter, along with distributions and individual carbon isotope ratios of n-alkanes from organic extracts. The microalga Botryococcus braunii (A race) was thus shown to be the main source of the predominant 27, 29 and 31 n-alkanes of Pula sediment Therefore, the dominance of odd carbon-numbered n-alkanes in the range C2535 in extracts from immature sediments shall not be systematically assigned to higher plant contribution but algal input is also possible. In fact, the long chain n-alkanes with an odd predominance previously observed in extracts of various immature sediments are likely to be derived at least partially, from algae.  相似文献   

2.
Simultaneous mass spectral detection and stable carbon isotope analysis was performed on individual indigenous n-alkanes isolated from single C4 and C3 plant species and on a series of aliphatic and polycyclic aromatic hydrocarbons (PAH) produced from the combustion of these same biomass materials. The analysis technique used a combined gas chromatograph-mass spectrometer/combustion/isotope ratio mass spectrometer (GC-MS/C/IRMS). Precision (2σ) for replicate measurements of individual compounds in standard solutions using this novel configuration ranged between 0.2 and 0.5‰ for n-alkanes and 0.3 and 0.8‰ for PAH. Accuracy of the n-alkane measurements ranged between 0.1 and 0.4‰ and that of the PAH measurements ranged between 0.2 and 0.9‰. Replicate GC-MS/C/IRMS measurements on the combustion-derived n-alkene/alkane pairs were performed to within a precision of between 0.1 and 1.1‰ and the precision for the combustion PAH was similar to the standard PAH solution. No notable isotopic effects were observed when altering the temperature of the combustion process from 900 to 700°C, or as a result of the individual n-alkenes/alkanes partitioning between the gaseous and condensate fractions. Combustion-derived n-alkenes/alkanes ranged from C11 to C31, and the C4-derived n-alkenes/alkanes were approx. 8‰ more enriched in 13C than the C3-derived compounds. Both the C4 and C3-derived n-alkenes/alkanes (C20-C30) were isotopically similar to the indigenous n-alkanes and were 2-3‰ more depleted in 13C than the lower mol. wt (C1111-C19) n-alkenes/alkanes, suggesting an independent origin for the lower mol. wt compounds. Combustion-generated C4 and C3-derived 2-, 3-, and 4-ring PAH were also isotopically distinct (Δδ = 10‰). Unlike the n-alkenes/alkanes, no compound-to-compound variations were observed between the low and high mol. wt PAH. This study demonstrates that the isotopic composition of original plant biomass material is mainly preserved in the aliphatic hydrocarbons and PAH generated by its combustion. Consequently, analyses of these compounds in sediments impacted by fire occurrences may provide useful information about paleo-fire activity that may help elucidate the impact biomass burning may have had and could have on climate-biosphere interactions.  相似文献   

3.
Two piston cores, one located far from the continents (The North Pacific Ocean: ES core), and another located comparatively closer to the continents (The Bering Sea: BOW-8a core) were investigated to reconstruct environmental changes on source land areas. The results show significant contribution of terrestrial organic matter to sediments in both cores. The δ13C values of n-C27, n-C29, and n-C31 alkanes in sediments from the North Pacific ES core show significant glacial to interglacial variation whereas those from the Bering Sea core do not. Variations of δ13C values of land plant n-alkanes are related to the environmental or vegetational changes in the source land areas. Environmental changes, especially, aridity, rainfall, and pCO2 during glacial/interglacial transitional periods can affect vegetation, and therefore C3 / C4 plant ratios, resulting in δ13C changes in the preserved land plant biomarkers. Maximum values of δ13C as well as maximum average chain length values of long chain n-alkanes in the ES core occur mostly at the interglacial to glacial transition zones reflecting a time lag related to incorporation of living organic matter into soil and transportation into ocean basins via wind and/or ability of C4 plants to adapt for a longer period before being replaced by C3 plants when subjected to gradual climatic changes. Irregular variations with no clear glacial to interglacial trends in the BOW-8a core may result from complex mixture of aerosols from westerly winds and riverine organic matter from the Bering Sea catchments. In addition, terrestrial organic matter entering the Bering Sea could originate from multiple pathways including eolian, riverine, and ice rafted debris, and possibly be disturbed by turbidity and other local currents which can induce re-suspension and re-sedimentation causing an obliterated time relation in the Bering Sea biomarker records.  相似文献   

4.
The carbon isotope composition (δ13C values) of long chain n-alkanes in lake sediments has been considered a reliable means of tracking changes in the terrigenous contribution of plants with C3 and C4 photosynthetic pathways. A key premise is that long chain leaf wax components used for isotope analysis are derived primarily from terrigenous higher plants. The role of aquatic plants in affecting δ13C values of long chain n-alkanes in lacustrine sediments may, however, have long been underestimated. In this study, we found that a large portion of long chain n-alkanes (C27 and C29) in nearshore sediments of the Lake Qinghai catchment was contributed by submerged aquatic plants, which displayed a relatively positive carbon isotope composition (e.g. −26.7‰ to −15.7‰ for C29) similar to that of terrestrial C4 plants. Thus, the use of δ13C values of sedimentary C27 and C29 n-alkanes for tracing terrigenous vegetation composition may create a bias toward significant overestimation/underestimation of the proportion of terrestrial C4 plants. For sedimentary C31, however, the contribution from submerged plants was minor, so that the δ13C values for C31 n-alkane in surface sediments were in accord with those of the modern terrestrial vegetation in the Lake Qinghai region. Moreover, we found that changes in the δ13C values of sedimentary C27 and C29 n-alkanes were closely related to water depth variation. Downcore analysis further demonstrated the significant influence of endogenous lipids in lake sediments for the interpretation of terrestrial C4 vegetation and associated environment/climate reconstruction. In conclusion, our results suggest that the δ13C values of sedimentary long chain n-alkanes (C27, C29 and C31) may carry different environmental signals. While the δ13C values of C31 were a reliable proxy for C4/C3 terrestrial vegetation composition, the δ13C values of C27 and C29 n-alkanes may have recorded lake ecological conditions and sources of organic carbon, which might be affected by lake water depth.  相似文献   

5.
An isobathic transect of marine surface sediments from 1°N to 28°S off southwest Africa was used to further evaluate the potential of the chain length distribution and carbon stable isotope composition of higher plant n-alkanes as proxies for continental vegetation and climate conditions. We found a strong increase in the n-C29–33 weighted mean average δ13C values from −33‰ near the equator to around −26‰ further south. Additionally, C25–35 n-alkanes reveal a southward trend of increasing average chain length from 30.0 to 30.5. The data reflect the changing contribution of plants employing different photosynthetic pathways (C3 and C4) and/or being differently influenced by the environmental conditions of their habitat. The C4 plant proportions calculated from the data (ca. 20% for rivers draining the rainforest, to ca. 70% at higher latitude) correspond to the C4 plant abundance in continental catchment areas postulated by considering prevailing wind systems and river outflows. Furthermore, the C4 plant contribution to the sediments correlates with the mean annual precipitation and aridity at selected continental locations in the postulated catchment areas, suggesting that the C4 plant fraction in marine sediments can be used to assess these environmental parameters.  相似文献   

6.
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the δ13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their δ13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.  相似文献   

7.
The n-alkane C31/(C29 + C31) ratios from surface sediments in the eastern equatorial Pacific (EEP) exhibit higher values to the north and lower values to the south across the southern edge (2–4°N) of the Intertropical Convergence Zone (ITCZ). Since plants tend to synthesize longer chain length n-alkanes in response to elevated temperature and/or aridity, the higher C31/(C29 + C31) ratios at northern sites suggest a higher contribution of vegetation under hot and/or dry conditions. This is consistent with the observation that northern sites receive higher levels of plant waxes transported by northeasterly trade winds from northern South America, where hot and dry conditions prevail. Furthermore, from a sediment core covering the past 750 ka (core HY04; 4°N, 95°W) we found that C31/(C29 + C31) ratios exhibit a long-term decrease from MIS (marine oxygen isotope stage) 17 to 13. During this period, the zonal SST (sea-surface temperature) gradient in the equatorial Pacific increased, suggesting an increase in Walker circulation. Such intensified Walker circulation may have enhanced moisture advection from the equatorial Atlantic warm pool to the adjacent northern South America, causing arid regions in northern South America to contract, which may explain long-term decrease in n-alkane chain lengths.  相似文献   

8.
Hydrocarbon mixtures too complex to resolve by traditional capillary gas chromatography display gas chromatograms with dramatically rising baselines or “humps” of coeluting compounds that are termed unresolved complex mixtures (UCMs). Because the constituents of UCMs are not ordinarily identified, a large amount of geochemical information is never explored. Gas chromatograms of saturated/unsaturated hydrocarbons extracted from Late Archean argillites and greywackes of the southern Abitibi Province of Ontario, Canada contain UCMs with different appearances or “topologies” relating to the intensity and retention time of the compounds comprising the UCMs. These topologies appear to have some level of stratigraphic organization, such that samples collected at any stratigraphic formation collectively are dominated by UCMs that either elute early- (within a window of C15–C20 n-alkanes), early- to mid- (C15–C30 n-alkanes), or have a broad UCM that extends through the entire retention time of the sample (from C15–C42 n-alkanes). Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC–MS) was used to resolve the constituents forming these various UCMs. Early- to mid-eluting UCMs are dominated by configurational isomers of alkyl-substituted and non-substituted polycyclic compounds that contain up to six rings. Late eluting UCMs are composed of C36–C40 mono-, bi-, and tricyclic archaeal isoprenoid diastereomers. Broad UCMs spanning the retention time of compound elution contain nearly the same compounds observed in the early-, mid-, and late-retention time UCMs. Although the origin of the polycyclic compounds is unclear, the variations in the UCM topology appear to depend on the concentration of initial compound classes that have the potential to become isomerized. Isomerization of these constituents may have resulted from hydrothermal alteration of organic matter.  相似文献   

9.
Biodegraded oils are widely distributed in the Liaohe basin, China. In order to develop effective oil-source correlation tools specifically for the biodegraded oils, carbon isotopic compositions of individual n-alkanes from crude oils and their asphaltene pyrolysates have been determined using the gas chromatography–isotope ratio mass spectrometry technique. No significant fractionation in the stable carbon isotopic ratios of n-alkanes in the pyrolysates of oil asphaltenes was found for anhydrous pyrolysis carried out at temperatures below 340°C. This suggests that the stable carbon isotopic distribution of n-alkanes (particularly in the C16–C29 range) in the asphaltene pyrolysates can be used as a correlation tool for severely biodegraded oils from the Liaohe Basin. Comparison of the n-alkane isotopic compositions of the oils with those of asphaltene pyrolysates shows that this is a viable method for the differentiation of organic facies variation and post-generation alterations.  相似文献   

10.
Abundant tricyclic diterpanes (i.e., pimarane, dehydroabietane and simonellite) and tetracyclic diterpanes (e.g., phyllocladane) were detected in coal samples from the third member of the Shahejie Formation, Lower-Eogene, Liaohe Basin, China. Gas chromatography–isotope ratio mass spectrometry (GC–IRMS) analyses show that the carbon isotopic composition of terrigenous tricyclic and tetracyclic diterpenoid hydrocarbons are about 4–6‰ enriched in 13C compared to n-alkanes in the same samples. In addition, the pimaranes and phyllocladane have comparatively narrow stable carbon isotopic compositions among the different samples, with a slightly wider range in δ13C compositions for the abietanes (i.e., abietane, dehydroabietane and simonellite). The n-alkanes and triterpenoids reflect the δ13C compositions of higher plant wax.  相似文献   

11.
Two sediment cores of up to 550 cm length from an intertidal flat of the German Wadden Sea near the island of Spiekeroog were investigated for the quantity and composition of fossil organic matter (OM). The lowermost parts of the cores are dominated by grey mud of a salt marsh facies containing mainly terrestrial OM estimated to account for 60–75% of the total OM, based on δ13C values and the ratio of short to long chain n-alkanols. The terrigenous origin of the dominant fraction is indicated, among others, by high proportions of C29 sterols and long chain n-alkanes typical of plant waxes. Coarse shell beds overlying the grey mud at 2–2.5 m depth represent a flooding and erosion event possibly related to heavy storm floods in the Middle Ages. Within the intertidal sand-dominated sediments in the upper parts of the cores total organic carbon (TOC) contents are generally low, ranging from 0.1% to 0.5%, and correlate well with the amount of mud fraction (r2 0.90). At the surface, marine OM has not undergone intense diagenetic alteration and so is the dominant fraction. Eroded peat particles are common throughout most of the sequence and values of the Phragmites peat indicator (PPI) > 5 indicate an origin from reed peat due to a high relative abundance of the n-C24 alkane. Changes in the composition of microbial communities over the depth interval investigated are documented by varying compositions of unsaturated fatty acids with 16 and 18 carbons. Eicosapentaenoic acid (EPA) was detected along the entire cores and indicates the presence of EPA-producing bacterial strains.  相似文献   

12.
Phosphorus regeneration and burial fluxes during and after formation of the most recent sapropel S1 were determined for two deep-basin, low-sedimentation sites in the eastern Mediterranean Sea. Organic C/P ratios and burial fluxes indicate enhanced regeneration of P relative to C during deposition of sapropel S1. This is largely due to the enhanced release of P from organic matter during sulfate reduction. Release of P from Fe-bound P also increased, but this was only a relatively minor source of dissolved P. Pore-water HPO42− concentrations remained too low for carbonate fluorapatite formation. An increased burial of biogenic Ca-P (i.e., fish debris) was observed for one site. Estimated benthic fluxes of P during sapropel formation were elevated relative to the present day (∼900 to 2800 vs. ∼70 to 120 μmol m−2 yr−1). The present-day sedimentary P cycle in the deep-basin sediments is characterized by two major zones of reaction: (1) the zone near the sediment-water interface where substantial release of HPO42− from organic matter takes place, and (2) the oxidation front at the top of the S1 where upward-diffusing HPO42− from below the sapropel is sorbed to Fe-oxides. The efficiency of aerobic organisms in retaining P is reflected in the low organic C/P ratios in the oxidized part of the sapropel. Burial efficiencies for reactive P were significantly lower during S1 times compared with the present day (∼7 to 15% vs. 64 to 77%). Budget calculations for the eastern Mediterranean Sea demonstrate that the weakening of the antiestuarine circulation and the enhanced regeneration of P both contributed to a significant increase in deep-water HPO42− concentrations during sapropel S1 times. Provided that sufficient vertical mixing occurred, enhanced regeneration of P at the seafloor may have played a key role in maintaining increased productivity during sapropel S1 formation.  相似文献   

13.
We investigated the latitudinal changes in atmospheric transport of organic matter to the western Pacific and Southern Ocean (27.58°N-64.70°S). Molecular distributions of lipid compound classes (homologous series of C15 to C35n-alkanes, C8 to C34n-alkanoic acids, C12 to C30n-alkanols) and compound-specific stable isotopes (δ13C of C29 and C31n-alkanes) were measured in marine aerosol filter samples collected during a cruise by the R/V Hakuho Maru. The geographical source areas for each sample were estimated from air-mass back-trajectory computations. Concentrations of TC and lipid compound classes were several orders of magnitude lower than observations from urban sites in Asia. A stronger signature of terrestrial higher plant inputs was apparent in three samples collected under conditions of strong terrestrial winds. Unresolved complex mixtures (UCM) showed increasing values in the North Pacific, highlighting the influence of the plume of polluted air exported from East Asia. n-Alkane average chain length (ACL) distribution had two clusters, with samples showing a relation to latitude between 28°N and 47°S (highest ACL values in the tropics), whilst a subset of southern samples had anomalously high ACL values. Compound-specific carbon isotopic analysis of the C29 (−25.6‰ to −34.5‰) and C31n-alkanes (−28.3‰ to −37‰) revealed heavier δ13C values in the northern latitudes with a transition to lighter values in the Southern Ocean. By comparing the isotopic measurements with back-trajectory analysis it was generally possible to discriminate between different source areas. The terrestrial vegetation source for a subset of the southernmost Southern Ocean is enigmatic; the back-trajectories indicate eastern Antarctica as the only intercepted terrestrial source area. These samples may represent a southern hemisphere background of well mixed and very long range transported higher plant organic material.  相似文献   

14.
The kerogen of a sample of Estonian Kukersite (Ordovician) was examined by spectroscopic (solid state 13C NMR, FTIR) and pyrolytic (“off-line”, flash) methods. This revealed an important contribution of long, linear alkyl chains in Kukersite kerogen. The hydrocarbons formed upon pyrolysis are dominated by n-alkanes and n-alk-1-enes and probably reflect a major contribution of selectivity preserved, highly aliphatic, resistant biomacromolecules from the outer cell walls of Gloeocapsomorpha prisca. This is consistent with the abundant presence of this fossilized organism in Kukersite kerogen. In addition high amounts of phenolic compounds were identified in the pyrolysates. Series of non-methylated, mono-, di- and trimethylated 3-n-alkylphenols, 5-n-alkyl-1,3-benzenediols and n-alkylhydroxybenzofurans were identified. All series of phenolic compounds contain long (up to C19), linear alkyl side-chains. Kukersite kerogen is, therefore, an aliphatic type II/I kerogen, despite the abundance of free phenolic moieties. This study shows that phenol-derived moieties are not necessarily associated with higher plant-derived organic matter.The flash pyrolysate of Kukersite kerogen was also compared with that of the kerogen of the Guttenberg Oil Rock (Ordovician) which is also composed of accumulations of fossilized G. prisca. Similarities in the distributions of hydrocarbons and sulphur compounds were noted, especially for the C1–C6 alkylbenzene and alkylthiophene distributions. However, no phenolic compounds were detected in the flash pyrolysate of the Guttenberg kerogen. Possible explanations for the observed similarities and differences are discussed.  相似文献   

15.
Widespread mud volcanism across the thick (≤ 14 km) seismically active sedimentary prism of the Gulf of Cadiz is driven by tectonic activity along extensive strike–slip faults and thrusts associated with the accommodation of the Africa–Eurasia convergence and building of the Arc of Gibraltar, respectively. An investigation of eleven active sites located on the Moroccan Margin and in deeper waters across the wedge showed that light volatile hydrocarbon gases vented at the mud volcanoes (MVs) have distinct, mainly thermogenic, origins. Gases of higher and lower thermal maturities are mixed at Ginsburg and Mercator MVs on the Moroccan Margin, probably because high maturity gases that are trapped beneath evaporite deposits are transported upwards at the MVs and mixed with shallower, less mature, thermogenic gases during migration. At all other sites except for the westernmost Porto MV, δ13C–CH4 and δ2H–CH4 values of ~ − 50‰ and − 200‰, respectively, suggest a common origin for methane; however, the ratio of CH4/(C2H6 + C3H8) varies from ~ 10 to > 7000 between sites. Mixing of shallow biogenic and deep thermogenic gases cannot account for the observed compositions which instead result mainly from extensive migration of thermogenic gases in the deeply-buried sediments, possibly associated with biodegradation of C2+ homologues and secondary methane production at Captain Arutyunov and Carlos Ribeiro MVs. At the deep-water Bonjardim, Olenin and Carlos Ribeiro MVs, generation of C2+-enriched gases is probably promoted by high heat flux anomalies which have been measured in the western area of the wedge. At Porto MV, gases are highly enriched in CH4 having δ13C–CH4 ~ − 50‰, as at most sites, but markedly lower δ2H–CH4 values < − 250‰, suggesting that it is not generated by thermal cracking of n-alkanes but rather that it has a deep Archaeal origin. The presence of petroleum-type hydrocarbons is consistent with a thermogenic origin, and at sites where CH4 is predominant support the suggestion that gases have experienced extensive transport during which they mobilized oil from sediments ~ 2–4 km deep. These fluids then migrate into shallower, thermally immature muds, driving their mobilization and extrusion at the seafloor. At Porto MV, the limited presence of petroleum in mud breccia sediments further supports the hypothesis of a predominantly deep microbial origin of CH4.  相似文献   

16.
Distinctive planktonic foraminiferal assemblages which characterize particular late Quaternary sapropel layers in deep basin sediments from the eastern Mediterranean Sea have been identified using cluster analysis. Three distinct clusters allow for identification and intercore correlation of the nine sapropels deposited during the last 250,000 yr. Cluster 1, representing sapropel layers S1 and S9, exhibits low abundances of Neogloboquadrina dutertrei and high abundances of Globigerinoides ruber; Cluster 2, which groups S3, S5, and S7, contains high abundances of G. ruber, N. dutertrei, and Globigerina bulloides, and Cluster 3, which includes samples from S4, S6, and S8, is marked by extremely abundant N. dutertrei and G. bulloides, and rare G. ruber. Analysis of sedimentation rates in 14 cores reveals the following approximate ages for the sapropel layers: S2 = 52,000 yr B.P.; S3 = 81,000–78,000 yr B.P.; S4 = 100,000–98,000 yr B.P.; and S5 = 125,000–116,000 yr B.P. As previously suggested, sedimentation rates on the Mediterranean Ridge were determined to be relatively constant during the last 127,000 yr. In contrast, basin sedimentation rates have fluctuated markedly from lower rates during interglacial stage 5 to higher rates during the last glacial episode. These glacial/interglacial differences are most pronounced in the northern Ionian Basin, because of increased terrigenous sediment deposition during glacial episodes. Unusually high biogenic sedimentation rates occurred in an arc south of Crete during the deposition of sapropel S5, probably due to higher productivity in this region.  相似文献   

17.
The influence of the northern Atlantic and tropical monsoonal systems, as recorded by the River Nile, on the climate variability of the southeastern Mediterranean was studied in two cores taken by the R/V Marion Dufresne: one core taken SE of Cyprus representing the northern Levantine Basin (core 9501, 980 m water depth) and the other located ˜380 km further south, represents the southeastern Levantine Basin in an area influenced by the River Nile plume (core 9509, 884 m water depth). The study was performed at relatively high resolution using several proxies: δ18O of Globigerinoides ruber, sediment characteristics and index colour parameters in core sections representing the last 86 ka. A low-resolution alkenone sea surface temperature record was also measured. The time frame in both cores was mostly constrained by ‘wiggle’ matching with the nearby well-dated δ18O and δ13C record of the Soreq Cave, which is mainly influenced by the eastern Mediterranean water vapor. The sedimentary record of the southern core is strongly influenced by the River Nile contribution throughout the last 86 ka, as evidenced by the higher sedimentation rates compared with the northern core (20 cm/ka vs. 5 cm/ka), continuously darker sediment colour, and higher TOC values (0.6–0.9 vs. 0.25 wt% not including sapropels). During sapropels S1 and S3, present in both cores, the influence of the River Nile became more widespread, reaching as far as Cyprus. Yet, the influence of the River Nile remained stronger in the south, as evident by the higher TOC values in the southern core throughout the entire 90 ka period and the longer duration of S1 in the southern core. An anomalous low δ18O interval that is not recorded in western Mediterranean occurred between 58 and 49 ka in the Levantine Basin and is more developed in the northern core. This period correlates with D-O interstadial 14 and maximum northern hemisphere insolation during the lastglacial cycle, suggesting that the warming mainly impacted the northern Levant.The Eastern Mediterranean Sea and land area was considerably warmer than the western Mediterranean throughout the LGM – Holocene transition, and the δ18OG. ruber drop of 4.5‰ is significantly greater than the 3‰ shift found for the western Mediterranean δ18OG. bulloides, both differences reflecting an increased continental effect from the western to eastern Mediterranean. Comparison between the marine and the land δ18O records suggests that the origin of rain over the land is composed of mixed signal from the southern and northern Levantine Basin. The study of Δδ18Osea–land variations demonstrates that various factors have influenced the sea–land relationship during the last 90 ka. The ‘amount effect’ has an important influence on rainfall δ18O during interglacial periods (particularly sapropel periods), whereas during glacial periods, increased land distances and elevation differences arising from decrease in sea level may have brought about decrease in δ18O of rainfall due to Rayleigh distillation processes. These influences were superimposed on those of sea surface water δ18O changes brought about by continental ice melting, and the strong effects felt in the southern Levantine Basin of the high River Nile input during periods of enhanced monsoonal activity.  相似文献   

18.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

19.
The vertical distribution of terrestrial and phytoplankton biomarker compounds in a sediment core from the coastal estuarine zone of the Guadiana river (southwest border between Portugal and Spain) was determined by gas chromatography–mass spectrometry. Significant downcore fluctuations were observed in the patterns of the most abundant alkyl series (n-alkanes and n-fatty acids), as well as in several biomarker ratios. In addition, a specific contribution from conifers is reflected in the presence of a resin acid series that first appears 6500 years BP. The observed changes in the lipid assemblage within the Holocene suggest recent variations in the planktonic and terrigenous supply, which are attributed mainly to the evolution of the circulation pattern in the estuary and to the alteration of vegetation cover within the Guadiana drainage basin. Our data suggest that on a 103–104 year time-scale, little or no diagenetic change occurred with respect to the compounds in question.  相似文献   

20.
Isotopic analysis by compound specific gas chromatography–isotope ratio mass spectrometry (GC–IRMS) is used to detect and characterize petroleum pollution in surficial sediments along the St Lawrence River, near Quebec City. Unusually mature n-alkane distributions have been found in some recent intertidal sediments in the region. GC–IRMS results suggest that the n-alkanes are not derived from indigenous organic sources because they carry δ13C values between −30.0 and −27.0‰, as well as very small isotopic differences between odd and even numbered n-alkanes, which are both typically associated with petroleum products. Comparison of these sediments with bunker fuel, an oil used in the shipping industry, has shown a close isotopic correlation in some sites, which is further supported by biomarkers. Overall, the contamination has been dispersed along the river but is generally localized around the industrial region where hydrocarbon transfer from shore storage to ships takes place. This study illustrates how GC–IRMS can be used effectively in the detection and characterization of petroleum pollutants in sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号