首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nye  Alan H.  Thomas  John H. 《Solar physics》1974,38(2):399-413
Solar Physics - A model of a sunspot penumbra, including the effects of magnetic field, compressibility, and buoyancy, is studied in order to identify the mode of running penumbral waves. It is...  相似文献   

2.
3.
The results of a statistical investigation of the occurrence of umbral flashes for 40 sunspot groups are reported for the period 1966–1983. The following characteristics were chosen for the analysis: (a) position on the solar disk; (b) group area; (c) sunspot area; (d) maximum magnetic field strength of a sunspot; (e) modified Zürich class; (f) sunspot age; (g) magnetic structure; and (h) flare activity of a group. The dependence of umbral flashes on magnetic structure of a sunspot is the most essential feature. The absence of umbral flashes in the umbrae of main sunspots perhaps may be used as one of the predictors of flare activity.  相似文献   

4.
Horizontal proper motions of penumbral structure and umbral dots have been measured from a 17-min-long time series of sunspot images by numerical techniques. In the penumbra, inflows are seen to occur predominantly in the inner region, with an average velocity of 290 m s–1. Penumbral outflows take place mostly in the outer part, where they reach velocities as high as 1.5 km s–1, with an average velocity of 500 m s–1. In the umbra, proper motions of 28 bright dots have been measured with an accuracy better than 50 m s–1. The mean velocity of the umbral dots is 210 m s–1. Most of the umbral dots display the well-known inward motion away from the peripheral umbra.  相似文献   

5.
6.
The full magnetoatmospheric wave equation is numerically solved for the particular penumbral model of Nye and Thomas (1974). For chromospheric running penumbral waves it is found that the maximum vertical velocity occurs at the base of the Hα region (z ≈ 300 km) much lower than previous WKB estimates have suggested. The maximum ‘vertical’ kinetic energy occurs at z ≈ - 130 km. Very significant horizontal velocities are also found for these waves, and, in the absence of shear flow it appears that previous estimates of photospheric vertical velocities of order 10?1 km s?1 could be substantial underestimates. For the photospheric events of Musman et al. (1976), a high vertical velocity maximum is found in the corona, and the modes appear highly dispersive for periods ≥ 220 s. The effects of a sinusoidal shear flow profile on running penumbral waves are examined, and it is found that the eigenvalues (horizontal wavenumber k) are changed little, but the eigenmodes become significantly distorted; the position of the vertical velocity peak rises compared to the zero flow case, and the velocity below that peak drops significantly. This effect may well cancel the increased estimates based on zero flow.  相似文献   

7.
The results of observations of the umbral flashes in two sunspots are reported. The sunspots differ in their morphological properties (evolution rates and activity levels) and in observation conditions (heliocentric distances). The oscillation parameters of the two sunspots do not coincide. The most significant differences are pronounced in the phase relations and amplitudes of observed oscillations.  相似文献   

8.
The emission sources of umbral flashes(UFs) are believed to be closely related to running umbral and penumbral waves,and are concluded to be associated with umbral dots in the solar photosphere. Accurate identification of emission sources of UFs is crucial for investigating these physical phenomena and their inherent relationships. A relatively novel model of shape perception,namely phase congruency(PC),uses phase information in the Fourier domain to identify the geometrical shape of the region of interest in different intensity levels,rather than intensity or gradient.Previous studies indicate that the model is suitable for identifying features with low contrast and low luminance. In the present paper,we applied the PC model to identify the emission sources of UFs and to locate their positions. For illustrating the high performance of our proposed method,two time sequences of Ca II H images derived from the Hinode/SOT on 2010 August 10 and 2013 August 20 were used. Furthermore,we also compared these results with the analysis results that are identified by the traditional/classical identification methods,including the gray-scale adjusted technique and the running difference technique. The result of our analysis demonstrates that our proposed method is more accurate and effective than the traditional identification methods when applied to identifying the emission sources of UFs and to locating their positions.  相似文献   

9.
P. R. Wilson 《Solar physics》1969,10(2):404-415
On the basis of a three-dimensional radiative transfer analysis of several models it is shown that bright structures in sunspot umbrae which have horizontal diameters of 300 km or less cannot extend more than 300 km down into the umbra. Thus, such models are inconsistent with the hypothesis that the bright features are due to convection from the deep regions of the umbra. No such restrictions can be applied if the surface diameter is of order 500 km, but a model of this type is shown to be inconsistent with the available data. Thus a convective explanation of these bright features appears to be ruled out.A model having a diameter of 200 km is shown to be consistent with the available observations but these are not sufficiently precise to warrant any strong claim for the validity of this model. The features of this model are described and it is shown that near the limb the apparent brightness of these features compared to the umbral background should increase. However, order-of-magnitude calculations show that there is some doubt whether joule heating can account for the non-radiative energy requirements of this model.  相似文献   

10.
The mean width and distribution of penumbral filaments of a sunspot have been estimated, using white light photographs obtained with a vacuum, Newtonian type, telescope. Three areas corresponding to the penumbra of a sunspot have been analysed. Data were collected during the solar eclipse of June 1973. The photometric profiles of the Moon limb over the photosphere have been analysed to obtain useful information on both, atmospheric and instrumental perturbation on each exposure. The mean value of the width of penumbral filaments is 0.37 arc sec.Now at INTA-Villafranca, S.T.S., P.O. Box 54065, Madrid, Spain.  相似文献   

11.
F. Kneer 《Solar physics》1973,28(2):361-367
Photographic spectra of the umbra of a sunspot (1971, August 24, Rome No. 6205) around 6150 Å show fine bright threads which were identified as the spectra of a lightbridge, of the bright end of a penumbral filament and of umbral dots, respectively. It was found, in agreement with the results of other authors, that the magnetic field in bright structures is considerably weaker than in dark umbral material. Analysis of line profiles of Fe ii 6149.2 Å in umbral dots indicates (a) a fieldstrength reduced by a factor 2 compared to the surroundings, (b) an outflow with v3.0 km s–1 relative to the penumbra and (c) possibly photospheric temperatures in umbral dots.Mitteilungen aus dem Fraunhofer Institut Nr. 115.  相似文献   

12.
The generation of low-frequency waves in the solar wind by the flux of protons accelerated in the magnetosheath is considered. It is shown that pulsations are produced in two partly overlapping frequency ranges. The growth rate of waves is maximal when the angle θ between the direction of the interplanetary magnetic field and the front of the bow shock is not equal π2. The dependence of the increment of perturbation on the solar wind velocity is analysed. A satisfactory agreement between theory and experimental results on the connection of Pc3–4 properties and parameters of the solar wind is obtained.  相似文献   

13.
Unstable pertubation modes exist in the magnetic field of penumbral electric current and I think the penumbral filaments are formed from the development of such modes. Under the short wave approximation the non-adiabatic dispersion equation is solved in the radial and transverse directions of the sunspot. From the condition of instability the length and width of the penumbral filament can be evaluated and it is found that the filament mode is static in the direction of the length and is non-moving in the direction of the width, that the penumbral filaments are a feature of the sunspot magnetic flow under gravity and that the presence of the filaments implies the existence of a twisted magnetic field.  相似文献   

14.
An analytically derived distribution function of reflected and accelerated electrons at a nearly perpendicular shock is presented. Then this distribution in a simplified form is introduced into a 1.5-D relativistic electromagnetic particle-in-cell (PIC) model and a generation of waves is studied. Numerical modeling shows not only a generation of Langmuir and high-frequency electromagnetic waves as expected, but also an efficient generation of whistler waves. Their role in emission processes of type II solar radio bursts is discussed.  相似文献   

15.
Wiehr  E. 《Solar physics》2000,197(2):227-234
The uncertainty about a possible correlation between magnetic field strength, inclination, and the continuum intensity of sunspot penumbral fine-structure has been removed from detailed analysis of a spatially very well-resolved spectrum: the darker, long penumbral lanes host a 10% stronger and 30° flatter magnetic field as compared to the field in bright penumbral locations. This finding is not only based on the high spatial resolution but also on the use of a spectral line, here Fe 6842.7 Å, obtaining its essential contribution from those deep layers where the penumbral structure is seen, i.e. the continuum intensity level. The almost perfect correlation establishes that the penumbral structure is formed by the two magnetic components mainly differing by the field inclination. The different results from other Zeeman lines, as, e.g., Fe 6302.5 Å, indicate a different field structure above the white-light penumbral layers.  相似文献   

16.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

17.
It is confirmed that the penumbral bright grains are moving towards the sunspots umbra. We find different proper motions of 0.08 to 0.33 km s–1 for different penumbrae and different reduction methods. The lifetimes of these bright grains are about 1.5 to 3 hr depending on the position in the penumbra.  相似文献   

18.
A statistical analysis is made of the spatial distribution of umbral dots and photospheric granules. The dots and granules are more evenly spaced than random points, though dots mapped by different observers have different distributions.  相似文献   

19.
Based on a plane-parallel isothermal solar model atmosphere permeated by a horizontal magnetic field whose strength is proportional to the square root of the plasma density and in the approximation of a specified field for vertically propagating and nonpropagating magnetoacoustic-gravity waves, we consider the nonlinear interaction between the corresponding disturbances, to within quantities of the second order of smallness. We investigate the efficiency of the nonlinear generation of waves at difference and sum frequencies and of an acoustic flow (wind) as a function of the magnetic-field strength and the excitation frequency of the initial disturbances at the lower atmospheric boundary.  相似文献   

20.
Based on a plane isothermal solar-atmosphere model, we investigate the parametric generation of acoustic-gravity waves (AGWs) in the approximation of a fixed field for vertically propagating disturbances. Both nonpropagating and propagating AGWs are shown to be generated at the difference frequency via the nonlinear interaction of primary waves in the frequency range “forbidden” for the propagation of AGWs during their linear generation. An acoustic wind has been found to be formed in the solar atmosphere at zero difference frequency; its velocity increases with height in inverse proportion to the decreasing ambient density. We study the nonlinear generation of AGWs at the second harmonic during the interaction of disturbances from the forbidden frequency range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号