首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion acoustic (IA) waves in a magnetized plasma. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron nonextensivity decreases the phase velocities of both two modes. Also obliqueness leads to increase of separation between two modes. The nonlinear evolution of IA solitary waves is governed by an energy-like equation. The influence of electron nonextensivity, obliqueness and electron population on the existence domain of solitary waves and the soliton characteristics are examined. It is shown that the existence domain of the IA soliton and its profile is significantly depended on the deviation of electrons from thermodynamic equilibrium and obliqueness. Interestingly, the present model supports compressive as well as rarefactive IA solitary waves. Our finding should elucidate the nonlinear electrostatic structures that propagate in astrophysical and cosmological plasma scenarios where nonextensive and magnetized plasma can exist; like instellar plasma stellar polytropes, solar neutrino problem, peculiar velocities of galaxy clusters, dark-matter halos, protoneutron stars, hadronic matter, quark-gluon plasma, and magnetosphere, etc.  相似文献   

2.
The plasma wave instrument (PWI) on board the Polar spacecraft made numerous passages of the dayside magnetopause and several probable encounters with the magnetosheath during the years 1996 and 1997. During periods of relatively high density, the PWI antenna-receiver system is coupled to the plasma and oscillates. The oscillations have been shown (cf. Radio Sci. 36 (2001) 203) to be indicative of periods of higher plasma density and plasma flows, possibly associated with magnetic reconnection. We have studied the plasma waves observed on three distinct magnetopause passes distinguished by the presence of these oscillations of the PWI receivers, and we report on the data obtained near, but not during, the times of the oscillations and the possible role of these waves in magnetic reconnection. Sweep-frequency receiver and high-resolution waveform data for some of these times are presented. The plasma wave measurements on each of the passes are characterized by turbulence. The most stable waves are whistler mode emissions typically of several hundred hertz that are seen intermittently in these regions. The data indicate the presence of impulsive solitary-like wave structures with strong electric fields both parallel and perpendicular to the magnetic field near, but not always within, suspected reconnection sites. The solitary waves show the highest occurrence when observed with electrostatic electron cyclotron waves. These latter waves have been observed in the past in the cusp, polar magnetosphere, and auroral regions and therefore may represent excursions into the cusp, but also indicate the presence of low-energy electron beams. Turbulence near the lower hybrid frequency, low-frequency EM waves, and impulsive monopolar electrostatic pulses are seen throughout the magnetopause and particularly near regions of large decrease in the local magnetic field and enhanced field-aligned flows, the suspected reconnection sites. The absence of significant solitary wave signatures within suspected reconnection sites may require modifications to some reconnection models.  相似文献   

3.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   

4.
The effects of dust charge fluctuations and deviations from isothermality of electrons are incorporated in the study of nonlinear dust ion-acoustic waves. Deviations from isothermality of electrons are included in this model as a result of nonlinear resonant interaction of the electrostatic wave potential with electrons during its evolution. The basic properties of stationary structures are studied by employing the reductive perturbation method, and conditions for the formation of small but finite amplitude dust ion-acoustic solitary waves in the space dusty plasma situations are clearly explained. It is shown that a more depletion of the background free electrons owing to the attachment of these electrons to the surface of the dust grains during the charging process can lead to the formation of solitary waves with smaller amplitude. Furthermore, effects of the dust charge fluctuation and deviations from isothermality of electrons show a non-uniform behavior for the amplitude of solitary waves in transition from the Boltzmann electron distribution to a trapped electron one. It is also found that the dust charge fluctuation caused by trapped as well as free electrons is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves.  相似文献   

5.
A theoretical investigation has been made of propagating electrostatic waves in a four-component adiabatic dusty plasma, whose constituents are adiabatic electrons, adiabatic ions, adiabatic positively and as well as negatively charged warm dust. The basic features of the solitary structures in such a four-component adiabatic dusty plasma are studied by the reductive perturbation method. It is found that the presence of the positive dust component does not only significantly modify the basic properties of the solitary waves, but also causes the existence of the positive solitary potential structures, which is an interesting feature shown in an adiabatic dusty plasma with the dust of opposite polarity. It is also observed that the basic properties (polarity, speed, amplitude and width) of the DA SWs are significantly modified by the effects of adiabaticity (γ>1) of electrons, ions, negatively as well as positively charged warm dust. The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty space plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

6.
A theoretical investigation is carried out to analyse the propagation of ion acoustic (IA) waves in a magnetized bi-ion plasma having two populations of fluid ions and kappa-distributed electrons. The propagation properties of all possible modes (in the linear regime) are investigated. The nonlinear evolution of the IA solitary waves is governed by a Korteweg-de Vries (KdV)-like equation. The influence of obliqueness, magnitude of the magnetic field, ion polarity and electron superthermality on the IA waves is then examined. Our findings should aid in understanding the nonlinear electrostatic excitations that may propagate in spatial magnetized plasmas.  相似文献   

7.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion-acoustic (IA) solitary waves in a magnetized electron-positron-ion (e-p-i) plasma. The nonlinear Korteweg-de Vries (KdV) equation is derived by using the reductive perturbation method. The plasma parameters such as, the degree of nonextensivity, obliqueness, positron concentration and temperature ratio are found to significantly affect the solitary waves characteristics. Also, a critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. Our finding contributes to the physics of the nonlinear electrostatic excitation in astrophysical and cosmological scenarios like magnetosphere, polar cups region of pulsars, neutron stars and white dwarfs, etc., where magnetized e-p-i plasma can exist.  相似文献   

8.
A theoretical investigation of the one dimensional dynamics of nonlinear electrostatic dust ion-acoustic (DIA) waves in an unmagnetized dusty plasma consisting of ion fluid, non-thermal electrons and fluctuating immobile dust particles has been made by the reductive perturbation technique. The basic features of DIA solitary and shock waves are studied by deriving the Korteweg-de Vries (KdV) and KdV Burger equations, respectively. It is shown that the special patterns of nonlinear electrostatic waves are significantly modified by the presence of the non-thermal electron component. In particular, the rarefactive solitary and shock structures are found with smaller amplitude in comparison to the isothermal case. The transition from DIA solitary to shock waves is also studied which is related to the contributions of the dispersive and dissipative terms. It is found that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves. Furthermore, the dissipative effect becomes important and may prevail over that of dispersion as the population of non-thermal electrons present decreases. The present investigation may be of relevance to electrostatic solitary structures observed in many space dusty plasma, such as Saturn’s E-ring.  相似文献   

9.
A reductive perturbation technique is employed to solve the fluid-Poisson equations in spherical geometry describing a weakly nonlinear electron–acoustic (EA) waves in unmagnetized plasma consisting of stationary ions, cold electrons and kappa distributed hot electrons. It is shown that a variable coefficient Kadomtsev–Petviashvili (KP) equation governs the evolution of scalar potential describing propagation of EA waves. The influence of suprathermality and geometry effects on propagation of EA solitary waves is investigated. We found that when electrons evolve toward their thermodynamic equilibrium, EA solitons are generated with large amplitudes. Also it is shown that EA solitary structures can be significantly modified by transverse perturbations.  相似文献   

10.
In an electron beam emission experiment on board the EXOS-B (JIKIKEN) satellite (200 V, 1 mA-maximum), several types of waves are strongly excited by the beam such as plasma frequency, upper hybrid frequency, electron cyclotron frequency, their harmonics and nonlinear coupling of these waves. Measurements of these waves give information on local plasma density and magnetic field strength and it is revealed that the electron beam emission from the spacecraft is a powerful diagnostic tool in the magnetosphere. A long term observation in this electron beam experiment has provided us with the average plasma density profile in the magnetosphere. It is also useful for the detection of the plasmapause. Plasma density measurements down to the order of 10 cm–3 are possible. The instrument itself is very simple and compact, so that it will be a powerful plasma diagnostic tool in future magnetospheric and planetary explorations.  相似文献   

11.
A theoretical investigation is carried out for understanding the properties of electron-acoustic potential structures (i.e., solitary waves and double-layers) in a magnetized plasma whose constituents are a cold magnetized electron fluid, hot electrons obeying a nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation; modified Zakharov–Kuznetsov (MZK) equation, in the small amplitude regime. The MZK equation is analyzed to examine the existence regions of the solitary pulses and double-layers. It is found that rarefactive electron-acoustic solitary waves and double-layers strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter.  相似文献   

12.
According to a widespread point of view, intensive electrostatic structures in the E‐region of the auroral ionosphere can be a consequence of the excitation of the modified two‐stream or Farley‐Buneman (FB) plasma turbulence. But in spite of the successes of the theoretical and experimental research of the auroral radar scattering, it is impossible to explain the existence of auroral echoes with large aspect angles (> 2 deg.), the wave propagation perpendicular to the electron drift velocity and wave scales less than 1 m. In this paper the coherent nonlinear interactions of three and four electrostatic FB‐waves are considered analytically and numerically. The evolution of the nonlinear waves is described by a system of magnetohydrodynamic equations. 1) It is shown that the interaction of three and four coherent waves is the main physical mechanism which leads to the saturation of the FB‐instability. 2) If no dissipative and dispersive effects occur, an explosive instability may be excited. 3) The main result of the interaction of coherent waves is the generation of nonlinear waves and nonlinear structures when the waves are damped linearly and propagate perpendicular to the electron drift velocity. This region corresponds to large aspect angles of the small‐scale waves. 4) Further, the wave interaction causes a nonlinear stabilization of the growth of the high‐frequency waves and a formation of local density structures of the charged particles. The results of the numerical models allow to analyse the possibility of scenarios of the two‐stream plasma instability in the collisional auroral E‐region.  相似文献   

13.
Energy spectra of electrons encountered on a rocket flight across an array of auroral arcs are employed to test three related models of electron acceleration. All three are based on a potential difference existing between the source plasma in the magnetosphere and the observation point in the ionosphere. One of the models provides a satisfactory fit to the observed spectra. Two alternative mechanisms are suggested to explain this model. The first possibility is a time-varying potential difference, which results in the accelerated electrons being observed with a statistical distribution of energy gain. The second possibility, which results in the same energy gain distribution, is a constant potential difference operating in conjunction with plasma instabilities generated by the accelerated beam. The energy gain distribution in the second case is therefore a consequence of a constant potential difference and a variable energy loss. In addition it is suggested that electrostatic waves generated by the instabilities could accelerate ambient plasma to suprathermal energies. Application of the model to the complete data set yields a continuous record of the parameters defining the acceleration and source plasma across the array of arcs. Reference is also made to an acceleration mechanism involving resonance with electrostatic waves.  相似文献   

14.
Electron acoustic blow up solitary waves and periodic waves are studied in a classical unmagnetized plasma containing cold electron fluid, kappa distributed hot electrons and stationary ions. We obtain Korteweg-de Vries (KdV) equation for electron acoustic waves (EAWs) using the reductive perturbation technique (RPT). Applying bifurcation theory of planar dynamical systems to the obtained KdV equation, we prove the existence of electron acoustic blowup solitary and periodic wave solutions. Depending on different physical parameters, two types of exact explicit solutions of the mentioned waves are derived. Our model may be applied to explain blow up solitary and periodic wave features that may occur in the planetary magnetosphere and the plasma sheet boundary layer.  相似文献   

15.
A theoretical investigation has been made of electrostatic solitary structures in an electron-positron-ion (e-p-i) plasma, taking nonextensive electrons and nonextensive positrons. By employing the reductive perturbation method, the basic characteristics of ion-acoustic (IA) solitary waves (SWs) in a three-component e-p-i plasma (consisting of negatively charged nonextensive electrons, positively charged nonextensive positrons, and ions) have been addressed. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations are derived and their numerical solutions are obtained. It has been shown that the combined effects of electron nonextensivity, positron nonextensivity, and ions significantly modify the behavior of these electrostatic solitary structures that have been found to exist with positive and negative potential in this plasma model. The present analysis may be useful to understand and demonstrate the dynamical properties of IA SWs in different astrophysical and cosmological scenarios (viz. stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc.).  相似文献   

16.
Arbitrary amplitude electron acoustic (EA) solitary waves in a magnetized nonextensive plasma comprising of cool fluid electrons, hot nonextensive electrons, and immobile ions are investigated. The linear dispersion properties of EA waves are discussed. We find that the electron nonextensivity reduces the phase velocities of both modes in the linear regime: similarly the nonextensive electron population leads to decrease of the EA wave frequency. The Sagdeev pseudopotential analysis shows that an energy-like equation describes the nonlinear evolution of EA solitary waves in the present model. The effects of the obliqueness, electron nonextensivity, hot electron temperature, and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the boundary values of the permitted Mach number decreases with the nonextensive electron population, as well as with the electron nonextensivity index, q. It is also found that an increase in the electron nonextensivity index results in an increase of the soliton amplitude. A comparison with the Vikong Satellite observations in the dayside auroral zone is also taken into account.  相似文献   

17.
This tutorial paper is devoted to theoretical aspects of the coherent electrostatic structures that have been encountered in various space plasmas. These structures, called solitary waves, electrostatic shocks or double layers have been observed in the solar wind, the Earth bow shock, the auroral zones and the magnetotail. Most of these structures can be interpreted in terms of electron or ion phase space holes. Their1D structure, their emergence from plasma instabilities, their mutual interactions, their bidimensional stability, and their ability to create large scale electric fields are discussed in this paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
It is shown that sheared electron flows can generate long as well as short wavelength (in comparison with the ion gyroradius) electrostatic waves in a nonuniform magnetplasma. For this purpose, we derive dispersion relations by employing two-fluid and hybrid models; in the two-fluid model the dynamics of both the electrons and ions are governed by the hydrodynamic equations and the guiding center fluid drifts, whereas the hybrid model assumes kinetic ions and fluid electrons. Explicit expressions for the growth rates and thresholds are presented. Linearly excited waves attain finite amplitudes and start interacting among themselves. The interaction is governed by the nonlinear equations containing the Jacobian nonlinearities. Stationary solutions of the nonlinear mode coupling equations can be represented in the form of a dipolar vortex and a vortex street. Conditions under which the latter arise are given. Numerical results for the growth rates of linearly excited modes as well as for various types of vortices are displayed for the parameters that are relevant for the F-region of the Earth's ionosphere. It is suggested that the results of the present investigation are useful in understanding the properties of nonthermal electrostatic waves and associated nonlinear vortex structures in the Earth's ionosphere.  相似文献   

19.
Properties of fully nonlinear ion-acoustic solitary waves in an unmagnetized and collisionless pair-ion (PI) plasma containing superthermal electrons obeying Cairns distribution have been analyzed. A linear biquadratic dispersion relation has been derived, which yields the fast (supersonic) and slow (subsonic) modes in a pair-ion-electron plasma with nonthermal electrons. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in case of slow mode, both electrostatic hump and dip type structures are formed depending on the temperature difference between positively and negatively charged ions, whereas, only dip type solitary structures have been observed for fast mode. The present work may be employed to explore and to understand the formation of solitary structures in the space (especially, the Earth’s ionosphere where two distinct pair ion species (H ±) are present) and laboratory produced pair-ion plasmas with nonthermal electrons.  相似文献   

20.
Weak ion-acoustic solitary waves (IASWs) in unmagnetized plasmas having two-fluid ions and kappa-distributed electrons are considered. The effects of electron suprathermality, warm ion temperature and polarity on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号