首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
林树潮     《世界地震工程》2021,(1):129-136
为了研究高阶晃动振型对LNG储罐地震响应的影响,考虑高阶晃动振型,建立LNG储罐的简化力学模型,推导LNG储罐的运动控制方程,给出了LNG储罐的基底剪力、倾覆弯矩和储罐内液体晃动波高的表达式。以某16×104 m3 LNG储罐为例,采用大型通用有限元分析软件ADINA System对其进行有限元模型分析,验证其修正模型的有效性,结果表明:高阶晃动振型对基底剪力和倾覆弯矩几乎无影响,但对晃动波高影响显著,尤其是长周期地震动作用下,并且考虑高阶晃动振型的晃动波高存在延时效应。提出的简化力学模型修正公式与有限元分析结果吻合较好,可以准确地预测LNG储罐地震响应。  相似文献   

2.
Numerical simulations of a single‐degree‐of‐freedom (SDOF) structure, rigidly supporting a tuned liquid damper (TLD) and subjected to both real and artificially generated earthquake ground motions, show that a properly designed TLD can significantly reduce the structure's response to these motions. The TLD is a rigid, rectangular tank with shallow water in it. Its fundamental linear sloshing frequency is tuned to the structure's natural frequency. The TLD is more effective in reducing structural response as the ground excitation level increases. This is because it then dissipates more energy due to sloshing and wave breaking. A larger water‐depth to tank‐length ratio than previous studies suggested, which still falls within the constraint of shallow water theory, is shown to be more suitable for excitation levels expected in strong earthquake motions. A larger water‐mass to structure‐mass ratio is shown to be required for a TLD to remain equally effective as structural damping increases. Furthermore, the reduction in response is seen to be fairly insensitive to the bandwidth of the ground motion but is dependent on the structure's natural frequency relative to the significant ground frequencies. Finally, a practical approach is suggested for the design of a TLD to control earthquake response. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
剪切波速对场地地表地震动参数的影响   总被引:3,自引:2,他引:1  
本文以江淮地区典型场地资料为原型,将土层剪切波速实测值按照一定比例进行增减,构造多种场地土层地震反应分析模型,选择Taft、E1centro和Kobe三条强震记录作为地震输入,采用一维频域等效线性化波动方法进行了土层地震反应分析.研究结果表明,剪切波速的变异性与场地地表地震动的影响程度与输入基岩地震动的频谱特性、幅值、土层结构等因素有关.地表峰值加速度随着剪切波速的增大而逐渐增大,地表加速度反应谱的特征周期随着剪切波速的增大而逐渐减小.  相似文献   

4.
A variationally coupled BEM–FEM is developed which can be used to analyse dynamic response, including free-surface sloshing motion, of 3-D rectangular liquid storage tanks subjected to horizontal ground excitation. The tank structure is modelled by the finite element method and the fluid region by the indirect boundary element method. By minimizing a single Lagrange function defined for the entire system, the governing equation with symmetric coefficient matrices is obtained. To verify the newly developed method, the analysis results are compared with the shaking-table test data of a 3-D rectangular tank model and with the solutions by the direct BEM–FEM. Analytical studies are conducted on the dynamic behaviour of 3-D rectangular tanks using the method developed. In particular, the characteristics of the sloshing response, the effect of the rigidity of adjacent walls on the dynamic response of the tanks and the orthogonal effects are investigated. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
近断层地震动对近场区域会造成严重的地震灾害,尤其区域内存在沉积地形时会进一步加重灾害。目前,针对释放能量更大、破坏力更强的逆冲断层地震作用下沉积盆地的地震动响应研究还未见报道。本文即采用谱元法,研究了动力学逆断层地震作用下的三维沉积盆地的动力响应。文中以椭球形沉积盆地为例,对其逆断层地震动响应特性进行了分析,并探讨了改变内外介质波速比和沉积厚度时沉积盆地内部观测点地震动时程和峰值变化规律。研究表明:①沉积内外介质波速比对沉积盆地的地震动影响显著,当沉积内部介质波速比降低时,盆地内部地表的峰值响应增大,地震动持续时间明显延长,尤其是位于盆地中心加速度峰值放大2.08倍,持时延长1.97倍;②沉积盆地厚度同样对其地震动响应产生影响,当沉积厚度增加时盆地中心位置地震动响应减小,加速度峰值缩小约0.64倍,而盆地边缘区域的地震动响应明显增大,峰值放大约1.35倍。   相似文献   

6.
圆弧状多层沉积谷地在平面SV波入射下的动力响应   总被引:2,自引:0,他引:2       下载免费PDF全文
张郁山 《地球物理学报》2009,52(6):1547-1555
利用波函数的Fourier-Bessel级数展开法,推导出了含任意多个圆弧状沉积层的谷地在平面SV波入射下稳态动力响应的解析解,并分析了该级数形式的解析解随着截断项数的收敛问题.其结果表明,该级数解能够在一个非常宽的频带范围内收敛;通过在简化条件下与现有其他解析解的比较,验证了该解析解的正确性;并利用该解析解,以稳态地面运动的位移幅值和相位差为基本参数,在一个较宽的频带范围内讨论了谷地中沉积介质的成层性对地面运动的影响,其结果表明对于多层谷地而言,当入射波频率较高时,散射波之间的干涉显著并且出现了能量聚焦现象.  相似文献   

7.
A common effective method to reduce the seismic response of liquid storage tanks is to isolate them at base using base-isolation systems. It has been observed that in many earthquakes, the foregoing systems significantly affect on the whole system response reduction. However, in exceptional cases of excitation by long-period shaking, the base-isolation systems could have adverse effects. Such earthquakes could cause tank damage due to excessive liquid sloshing. Therefore, the numerical seismic response of liquid storage tanks isolated by bilinear hysteretic bearing elements is investigated under long-period ground motions in this research. For this purpose, finite shell elements for the tank structure and boundary elements for the liquid region are employed. Subsequently, fluid–structure equations of motion are coupled with governing equation of base-isolation system, to represent the whole system behavior. The governing equations of motion of the whole system are solved by an iterative and step-by-step algorithm to evaluate the response of the whole system to the horizontal component of three ground motions. The variations of seismic shear forces, liquid sloshing heights, and tank wall radial displacements are plotted under various system parameters such as the tank geometry aspect ratio (height to radius), and the flexibility of the isolation system, to critically examine the effects of various system parameters on the effectiveness of the base-isolation systems against long-period ground motions. From these analyses, it may be concluded that with the installation of this type of base-isolation system in liquid tanks, the dynamic response of tanks during seismic ground motions can be considerably reduced. Moreover, in the special case of long-period ground motions, the seismic response of base-isolated tanks may be controlled by the isolation system only at particular conditions of slender and broad tanks. For the case of medium tanks, remarkable attentions would be required to be devoted to the design of base-isolation systems expected to experience long-period ground motions.  相似文献   

8.
基于水平摇摆阻尼系统模型,建立土-层间隔震结构简化分析模型,将地基土等效到上部结构,推导得到简化模型动力特性参数表达式,并通过对结构周期比及振型参与位移进行分析,讨论质量比及土体剪切波速对层间隔震结构自振特性的影响规律。利用虚拟激励法及均匀调制非平稳随机响应分析方法,分别从时域和频域角度分析不同场地条件下SSI效应对层间隔震结构的振动响应影响。结果表明:在刚性地基下,结构质量比对结构周期比及振型参与位移的影响较小,SSI效应放大了各子结构响应,尤其对下部子结构响应影响最大,各子结构在场地土差异下变化明显,软土场地下各子结构响应变大。  相似文献   

9.
为研究考虑桩土相互作用的储液罐的动力响应及长周期地震波对储液晃动、储罐提离的影响,根据量纲分析法设计了桩-土-储罐模型进行了振动台试验。试验中采用4条基岩波、4条地表波进行振动台试验。试验显示基岩波与地表波输入时,体系变化规律基本一致,其结果表明:土体地表加速度被放大,且输入加速度峰值增加,地表加速度放大倍数减小;一般地震波时,随着输入加速度峰值的增加,储液晃动波高大致呈线性增加。长周期地震波下则为非线性增加,且晃动波较大。此外,液体产生的晃动波高与储罐类型相关。细高型储罐产生的波高稍大;储罐提离高度随着输入加速度峰值的增加呈非线性增长。长周期地震波激励下,储罐提离高度小于一般地震波时的提离高度。细高型储罐在长短周期地震波激励下,提离高度较为接近,而一般储罐在两种地震波激励下,提离高度相差较大。细高型储罐提离高度大于一般储罐的提离高度。建议在储罐设计时考虑长周期地震波的影响。  相似文献   

10.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Liu  Ping  Li  Ning  Ma  Hua  Xie  Lili  Zhou  Baofeng 《地震工程与工程振动(英文版)》2020,19(1):1-16
Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault regions. In this study, a new method for identifying the velocity pulses is proposed, based on different trends of two parameters: the short-time energy and the short-time zero crossing rate of a ground motion record. A new pulse indicator, the relative energy zero ratio(REZR), is defined to qualitatively identify pulse-like features. The threshold for pulse-like ground motions is derived and compared with two other identification methods through statistical analysis. The proposed procedure not only shows good accuracy and efficiency when identifying pulse-like ground motions but also exhibits good performance for classifying records with high-frequency noise and discontinuous pulses. The REZR method does not require a waveform formula to express and fit the potential velocity pulses; it is a purely signal-based classification method. Finally, the proposed procedure is used to evaluate the contribution of pulse-like motions to the total input energy of a seismic record, which dramatically increases the seismic damage potential.  相似文献   

12.
Transient ground strains are recognized to govern the response of buried elongated structures, such as pipelines and tunnels, under seismic wave propagation. Since a direct measure of ground strains is not generally available, simplified formulas relating peak ground strain to peak ground velocity, and based on 1D wave propagation theory in homogeneous media, are typically used for seismic design. Although they are adopted by most of the available technical guidelines, the use of these formulas may be questionable in complex realistic situations as either in the presence of strong lateral discontinuities, or in the epicentral area of large earthquakes, or in sites where relevant site amplification effects and spatial incoherency of ground motion are expected. To provide a contribution to overcome the previous limitations, a simplified formula relating peak ground longitudinal strain to peak ground velocity is proposed in this paper, as a function of the geometrical and dynamic parameters which have the major influence on strain evaluation. The formula has been obtained under small-strain assumptions, so that it can reasonably be applied under linear or moderately non-linear soil behaviour. The adequacy of this formula in the most common case of vertically propagating S-waves has been checked against 2D numerical solutions by Spectral Elements (SE) for representative geological cross-sections in Parkway Valley (New Zealand) and in the cities of Catania (Italy) and Thessaloniki (Greece). The shear strain and the longitudinal strain variability with depth is also investigated, through some qualitative examples and comparisons with analytical formulas.  相似文献   

13.
Simplification of strong ground motions to 1 cycle sine waves was investigated from the elastic and inelastic earthquake response analyses and response analyses under sine wave input using single‐degree‐of‐freedom systems. Strong ground motions could be simplified to 1 cycle sine waves if large plastic deformations, with ductility factor more than 2, were assumed. This is because the approximate maximum responses from input sine waves are determined by the initial response cycle, due to period elongation and plastic energy dissipation of the systems. A sine wave whose acceleration amplitude is the peak ground acceleration (PGA) and whose period is that of an equivalent 1 cycle sine wave is proposed. The period of an equivalent sine wave is easily obtained from the elastic response acceleration spectrum of a seismic record. This means that the inelastic responses are approximately determined by the PGA and an equivalent 1 cycle sine wave period. Therefore, an equivalent 1 cycle sine wave period provides a single index to express the frequency characteristics of a strong ground motion. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
地震动差动下高压输电塔-线体系的纵向反应   总被引:1,自引:0,他引:1  
考虑地震波以有限波速传播时所引起的地震行波效应,基于建立的高压输电塔-线体系空间有限元模型,利用在多点输入下考虑几何非线性的动力时程分析法,研究了体系纵向地震作用下的反应特性,并和一致地震动输入下的反应情况进行比较。结果表明:行波输入既可以增加又可以降低输电塔的地震反应,这与行波波速、地震动性质、输电塔档距以及输电塔-线体系中导(地)线的松紧程度有关;行波输入使导(地)线跨中竖向位移增加十分明显,但使导(地)线跨中纵向位移减小,同时行波输入使导(地)线的轴力增加十分明显。由此得出结论:高压输电塔-线体系地震反应受行波波速影响很大,考虑地震行波效应的影响是十分必要的。  相似文献   

15.
行波效应对大跨度空间结构随机地震响应的影响   总被引:1,自引:0,他引:1  
深入研究了行波效应对大跨度空间结构随机地震响应的影响,进一步完善了大跨度空间结构随机地震响应分析理论。推导了双支座、单自由度体系地震响应功率谱密度函数的解析表达式,研究了不同频率体系的响应峰值随地面视波速的变化规律,分析了多支撑点、多自由度体系的地震响应功率谱矩阵的特点,发现多自由度体系地震响应随地面视波速的变化规律与单自由度体系相似。数值模拟了某体育馆网壳结构在不同地面视波速情况下的随机地震响应,结果表明,考虑地震动行波效应后,结构地震响应随地面视波速的变化而显著变化,当视波速较低时其变化规律很复杂;且支撑点附近、受拟静力位移影响较大的部分杆件的地震响应明显增大,远离支撑点处、受拟静力位移影响较小的部分杆件的地震响应稍有减小。由此得出结论,对于大跨度空间结构的随机地震响应分析,必须考虑地震动的行波效应,尤其当受拟静力位移影响较大的部分杆件对结构抗震设计起控制作用时;且应对可能出现的地面视波速进行全面分析,作为结构抗震设计依据。  相似文献   

16.
根据我国台湾地区西部的地质地貌特征和1999年集集MW7.6地震的震源参数,建立了三维速度结构模型和两类震源模型。基于地壳中断层的位错积累量和岩石破裂后应力应变的传播特性,采用三维有限差分法对双冬断层活动可能产生的近场脉冲型地震动进行了模拟研究。结果表明:走滑断层垂直于断层走向的水平分量和逆断层垂直分量的峰值速度较大;由方向性效应所产生的双向速度脉冲主要集中在垂直于断层滑动分量方向,而由滑冲效应所产生的单向速度脉冲则主要集中在平行于断层滑动分量的方向;受方向性效应和上盘效应的共同制约,近场脉冲型地震动呈不对称带状分布,速度脉冲多分布在距离走滑断层迹线15 km和逆断层迹线10 km的范围内;速度反应谱在断层面的覆盖范围内沿破裂方向逐渐增大,且速度脉冲可能会对大型建筑物产生严重的剪切破坏。受凹凸体特性的影响,地震波场显示南投、台中和苗栗处于强地震动危险区。   相似文献   

17.
A thin layer element method is formulated to compute the dynamic response of submerged soil. The formulation is based on Biot's equation describing the dynamic behavior of fluid-saturated elasto-porous medium. The dynamic response of submerged soil is computed for various cases by using the developed formulation. The effects of submerged conditions are examined for submerged soil deposits with a water level at and above the ground surface. It is found that both submerged conditions and water body above the ground surface can considerably affect the dynamic response of soil deposits.  相似文献   

18.
Ground roll waves interfere with seismic data. The suppression of ground roll waves based on the division of wavelet frequencies considers the low-frequency characteristics of ground roll waves. However, this method will not be effective when the ground roll wave and the effective signal have the same frequency bands because of overlapping. The radial trace transform (RTT) considers the apparent velocity difference between the effective signal and the ground roll wave to suppress the latter, but affects the low-frequency components of the former. This study proposes a ground roll wave suppression method by combining the wavelet frequency division and the RTT based on the difference between the ground roll wave velocity and the effective signal and their energy difference in the wavelet domain, thus making full use of the advantages of both methods. First, we decompose the seismic data into different frequency bands through wavelet transform. Second, the RTT and low-cut filtering are applied to the low-frequency band, where the ground roll waves are appearing. Third, we reconstruct the seismic record without ground roll waves by using the inverse RTT and the remaining frequency bands. The proposed method not only improves the ground roll wave suppression, but also protects the signal integrity. The numerical simulation and real seismic data processing results suggest that the proposed method has a strong ability to denoise while preserving the amplitude.  相似文献   

19.
An innovative method of analysis was developed to simulate the non-linear seismic finite-amplitude liquid sloshing in two-dimensional containers. In view of the irregular and time-varying liquid surface, the method employed a curvilinear mesh system to transform the non-linear sloshing problem from the physical domain with an irregular free-surface boundary into a computational domain in which rectangular grids can be analysed by the finite difference method. Non-linearities associated with both the unknown location of the free surface and the high-order differential terms were considered. The Crank–Nicolson time marching scheme was employed and the resulting finite difference algorithm is unconditionally stable and very lightly damped with respect to the temporal co-ordinate. In order to minimize numerical instability caused by the computational dispersion in spatially discretized surface wave, a second-order dissipation term was added to the system to filter out the spurious high-frequency waves. Sloshing effects and structural response were measured in terms of sloshing amplitude, base shear and overturning moment generated by the hydrodynamic pressure of the liquid exerted on the container walls. Simulation results of liquid sloshing induced by earthquake and harmonic base excitations were compared with those of the linear wave theory and the limitations of the latter in assessing the response of seismically excited liquids were addressed.  相似文献   

20.
Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号