首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Soils in pro‐glacial areas are often approached from a chronosequence viewpoint. In the chronosequence approach, the objective is to derive rates of soil formation from differences in properties between soils of different age. For this reason, in chronosequence studies, soils are sampled in locations that are assumed geomorphically stable and that have different age. As a result, these studies do not necessarily yield a complete view of soil variability in pro‐glacial areas, and may miss important relations between geomorphology and soil development. In this contribution, we present new soil observations from three closely related pro‐glacial areas in Switzerland. These observations were intended to get closer to a complete view of soil variability, and to assess impacts from factors other than time on soil development. About 40 soils were visited in each pro‐glacial valley in a combined design‐convenience sampling scheme and described in the field. Linear modelling was used to assess effects of time and topographic factors on soil properties. The time since glacial retreat turned out to rarely explain more than half of the variation in soil properties, and a linear model combining effects of time and topographic variables explained typically about half of the variation in each pro‐glacial valley. Models differed and were not transferable between valleys. Apparently, time and the present‐day shape of the landscape combined are insufficient information to accurately predict soil properties. Field evidence points to the importance of the geomorphic history and regime of the valleys as a reason for this. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
K–Ar ages of young basalts (<500 ka) are often higher than the actual eruption age, due to low potassium contents and the frequent presence of excess Ar in olivine and pyroxene phenocrysts. Geological studies in the San Francisco and Uinkaret volcanic fields in Arizona have documented the presence of excess 40Ar and have concluded that K–Ar ages of young basalts in these fields tend to be inaccurate. This new study in the San Francisco volcanic field presents 3Hec and 21Nec ages yielded by olivine and pyroxene collected from three Pleistocene basalt flows – the South Sheba (∼190 ka), SP (∼70 ka), and Doney Mountain (∼67 ka) lava flows, – and from one Holocene basalt, the Bonito Lava Flow (∼1.4 ka) at Sunset Crater. These data indicate that, in two of three cases, 40Ar/39Ar and K–Ar ages of the young basalts agree well with cosmic-ray surface exposure ages of the same lava flow, thus suggesting that excess 40Ar is not always a problem in young basalt flows in the San Francisco volcanic field. The exposure age of the Bonito lava flow agrees within uncertainty with dendrochronological and archeological age determinations. K–Ar and cosmogenic 3He and 21Ne ages from the SP flow are in agreement and much older than the OSL age (5.5–6 ka) reported for this lava flow. Furthermore, if the non-cosmogenic ages are assumed to be accurate, the subsequent calculated production rates at South Sheba and SP flow sample sites agree well with values in the literature.  相似文献   

3.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
The Pliocene-Holocene Newer Volcanic Province (NVP) of southeastern Australia is an extensive, relatively well-preserved, intra-plate basaltic lava field containing more than 400 eruptive centres. This study reports new, high-precision 40Ar/39Ar ages for six young (300–600 ka) basalt flows from the NVP and is part of a broader initiative to constrain the extent, duration, episodicity and causation of NVP volcanism. Six fresh, holocrystalline alkali basalt flows were selected from the Warrnambool-Port Fairy area in the Western Plains sub-province for 40Ar/39Ar dating. These flows were chosen on the basis of pre-existing K-Ar age constraints, which, although variable, indicated eruption during a period of apparent relative volcanic quiescence (0.8–0.06 Ma).40Ar/39Ar ages were measured on multiple aliquots of whole rock basalt samples. Three separate flows from the Mount Rouse volcanic field yielded concordant 40Ar/39Ar age results, with a mean eruption age of 303 ± 13 ka (95% CI). An older weighted mean age of 382 ± 24 ka (2σ) was obtained for one sample from the central Rouse-Port Fairy Flow, suggesting extraneous argon contamination. Two basalt flows from the Mount Warrnambool volcano also yielded analogous results, with an average 40Ar/39Ar age of 542 ± 17 ka (95% CI). The results confirm volcanic activity during the interval of relative quiescence. Most previous K-Ar ages for these flows are generally older than the weighted mean 40Ar/39Ar ages, suggesting the presence of extraneous 40Ar. This study demonstrates the suitability of the 40Ar/39Ar incremental-heating method to obtain precise eruption ages for young, holocrystalline alkali basalt samples in the NVP.  相似文献   

5.
A recently discovered Bison-bearing fossil locality at Térapa, Sonora, Mexico, had previously been dated to 440 ± 130 ka using whole rock 40Ar/39Ar on a basalt flow that impounds the deposit. This age is considerably older than the accepted age of about 240–160 ka for the migration of Bison into greater North America. The Térapa deposit also contains a mixture of fossils from extralimital or extinct tropical animals and temperate animals. Constraining the age of the deposit is critical to interpret the paleontologic and paleoclimatologic implications of this unique Sonoran fossil locality. Three additional geochronological methods have been applied to this deposit (infrared stimulated luminescence (IRSL), amino acid racemization (AAR), and radiocarbon) and the data from the original 40Ar/39Ar age were revisited. The IRSL data suggest that the impounding basalt flow and the sediments that abut it were emplaced 43 ka ago and that the oldest sediments were deposited shortly after. Two radiocarbon ages suggest the fossiliferous sediments were emplaced by 42 ka. Effective diagenetic temperatures inferred from the AAR results, combined with AAR data from a similar-age deposit in southern Arizona, are in accordance with the 40–43 ka age estimates. For the AAR results to corroborate the 40Ar/39Ar age, the effective diagenetic temperature for the area would need to be approximately 3 °C, which is unrealistically low for northern Mexico. The new geochronological results suggest the Térapa deposit and fossils are 40–43 ka old. The anomalously old 40Ar/39Ar age for the impounding basalt is probably the result of low 40Ar* concentrations and inherited 40Ar.  相似文献   

6.
For lack of other widely available spatial information, topography is often used to predict water fluxes and water quality in mesoscale watersheds. Such data have however proven to be misleading in many environments where large and flat valley bottoms and/or highly conducive soil covers determine water storage and water transport mechanisms. Also, the focus is generally on the prediction of saturation areas regardless of whether they are connected to the catchment hydrographic network or rather present in isolated topographic depressions. Here soil information was coupled with terrain data towards the targeted prediction of connected saturated areas. The focus was on the 30 km2 Girnock catchment (Cairngorm Mountains, northeast Scotland) and its 3 km2 sub‐catchment, Bruntland Burn in which seven field surveys were done to capture actual maps of connected saturated areas in both dry and humid conditions. The 1 km2 resolution UK Hydrology of Soil Types (HOST) classification was used to extract relevant, spatially variable, soil parameters. Results show that connected saturated areas were fairly well predicted by wetness indices but only in wet conditions when they covered more than 30% of the whole catchment area. Geomorphic indices including information on terrain shape, steepness, aspect, soil texture and soil depth showed potential but generally performed poorly. Indices based on soil and topographic data did not have more predictive power than those based on topographic information only: this was attributed to the coarse resolution of the HOST classification. Nevertheless, analyses provided interesting insights into the scale‐dependent water storage and transport mechanisms in both study catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava damming. Four Middle Pleistocene lava flows (40Ar/39Ar‐ dated from 310 to 175 ka) filled and dammed the Gediz River at the Gediz–Geren confluence, resulting in base‐level fluctuations of the otherwise uplift‐driven incising river. Field reconstruction and luminescence dating suggest fluvial terraces in the Geren Catchment are capped by Middle Pleistocene aggradational fills. This showed that incision of the Geren trunk stream has been delayed until the end of MIS 5. Subsequently, the catchment has responded to base‐level lowering since MIS 4 by 30 m of stepped net incision. Field reconstruction left us with uncertainty on the main drivers of terrace formation. Therefore, we used landscape evolution modelling to investigate catchment response to three scenarios of base‐level change: (i) uplift with climate change (rainfall and vegetation based on arboreal pollen); (ii) uplift, climate change and short‐lived damming events; (iii) uplift, climate and long‐lived damming events. Outputs were evaluated for erosion–aggradation evolution in trunk streams at two different distances from the catchment outlet. Climate influences erosion–aggradation activity in the catchment, although internal feedbacks influence timing and magnitude. Furthermore, lava damming events partly control if and where these climate‐driven aggradations occur. Damming thus leaves a legacy on current landscape evolution. Catchment response to long‐duration damming events corresponds best with field reconstruction and dating. The combination of climate and base level explains a significant part of the landscape evolution history of the Geren Catchment. By combining model results with fieldwork, additional conclusions on landscape evolution could be drawn. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Arid alluvial fan and fluvial dry wash surfaces in Stonewall Flat, Nevada, USA, are characterized using surface geomorphic surveys, soil pits, botanical line surveys, and varnish microlamination dating techniques. Active and abandoned washes, and active fan surfaces are dominated by primary geomorphic processes of high‐energy sedimentation from flash floods. These surfaces are characterized by bar and swale topography, a lack of stone pavements, soil horizons, and rock varnish. Younger terraces and slightly older intermediate fan surfaces are in transition from primary sedimentation processes to lower energy secondary surface‐modifying processes of sheet wash and eolian transport and deposition. These surfaces are characterized by faint to no bar and swale topography, incipient to moderately well‐developed pavements and soil horizons, and abundant coppices. Old and stable fan surfaces are dominated by lower energy secondary processes and manifest well‐developed pavements, soils, and sparse coppices around widely distributed shrubs. Varnish microlamination dating yields ages of 13·15 ka for intermediate fan surfaces and 25·55 to 86·75 ka for stable fan surfaces. Plant communities co‐developing with these surfaces affect and are affected by both primary and secondary geomorphic fan processes. Relatively active surfaces contain few woody species. Co‐dominance of shrubs and annuals with abundant annuals between the shrubs is characteristic of surfaces transitional from primary processes to secondary processes. Stable surfaces dominated by secondary processes are characterized by woody perennials, with long‐lived woody species inhabiting the oldest surfaces. Feedback mechanisms between early botanical communities and eolian deposition affect coppice and pavement development. In turn, these surface features control both the composition and distribution of botanical communities on older, more stable surfaces. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

10.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non‐tiled watersheds exhibit a decrease in the area‐normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within‐basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non‐tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within‐basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The relationship between streamwater mean residence time (MRT) and landscape characteristics is poorly understood. We used tritium (3H) to define our MRT. We tested the hypothesis that baseflow water MRT increases with increasing absolute catchment size at the Maimai catchments. These catchments are simple hydrologic systems relative to many catchments around the world, with uniformly wet climatic conditions, little seasonality, uniform and nearly impermeable bedrock, steep short hillslopes, shallow soils, and well‐characterized hillslope and catchment hydrology. As a result, this is a relatively simple system and an ideal location for new MRT‐related hypothesis testing. Whilst hydrologists have used 3H to estimate water age since the 1960s nuclear testing spike, atmospheric 3H levels have now approached near background levels and are often complicated by contamination from the nuclear industry. We present results for 3H sampled from our set of nested catchments in nuclear‐industry‐free New Zealand. Because of high precision analysis, near‐natural atmospheric 3H levels, and well‐characterized rainfall 3H inputs, we were able to estimate the age of young (i.e. less than 3 years old) waters. Our results showed no correlation between MRT and catchment size. However, MRT was correlated to the median sub‐catchment size of the sampled watersheds, as shown by landscape analysis of catchment area accumulation patterns. These preliminary findings suggest that landscape organization, rather than total area, is a first‐order control on MRT and points the way forward for more detailed analysis of how landscape organization affects catchment runoff characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Soils along catenas of Pinedale (15–20 ka) and Bull Lake (100–130 ka) age moraines at Whiskey Basin in the Wind River Range, Wyoming, USA, were sampled to assess the effects of aeolian processes on soil development here. Aeolian processes appear to have in?uenced soils by both depositing sediments and eroding topsoils. Pedogenic silt (often used as an indicator of wind deposition) accumulated in the Bull Lake soils moderately correlate with pedogenic clay accumulated, suggesting that ?ne sediments may have been deposited and incorporated into soil formation here. Following removal of previous topsoil by wind during Pinedale glaciation, Bull Lake B horizons have developed into contemporary A horizons. These data further link aeolian processes to soil development on piedmont moraines throughout the Wind River Range. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Monitoring of dust deposition at several stations on Crete over a three year period has shown that the present-day depositional flux is of the order of 10-100 gm−2 yr−1. Most of the dust deposition takes place during a few annual dust [events] which typically last for 1-3 days. Dust haze episodes are usually associated with southerly or southwesterly winds which transport fine sediment from North Africa. Dust is raised by a wide variety of meteorological conditions which generate strong near-surface winds in the source areas, but major long-range transport events are often associated with cold fronts linked to the passage of deep mid-latitude depressions during winter and spring. Dust haze frequency and deposition rates are highest in western Crete and decrease towards the east, suggesting that transport from Tunisia and neighbouring parts of North Africa is particularly important. The measured rate of dust deposition is well below the minimum level required for loess formation. Deposits which have previously been identified as loess are shown to be uncemented marine marls of Tertiary age. Laboratory analysis of red soils, surface sediments, and bedrock samples has confirmed that many of the soils contain an important aeolian dust component, but it is concluded that a more important source of soil parent material is provided by weathering of local rocks. Many of the soils contain significant amounts of quartz sand which cannot have been transported across the sea from North Africa. Reworking of weathered material and deposited dust is extensive, and is accomplished by both aeolian and fluvial processes. Tectonically-controlled depressions in the mountains and parts of the coastal lowlands have acted as long-term sinks in which a thickness of several metres of sediment and soil has accumulated during the Quaternary.  相似文献   

15.
The presented study explores the prediction of soil water retention and its variability from soil texture and bulk density measurements, using a physically-based scaling technique. Specifically, the Arya–Paris (AP) physico-empirical model is applied to two soil datasets that are collected from two catchments located in different areas of Southern Italy. Laboratory-measured soil water retention functions are scaled to characterize soil variability. The laboratory-measured and AP-predicted reference water retention functions are compared by evaluating the lognormal distribution of derived scaling factors, relative to the mean reference retention function. Since the scaling theory assumes geometric similitude for the investigated soils, successful application of using particle-size distribution to estimate soil water retention requires separation of soils with different textures, using variance analysis. We conclude that variability in soil water retention can be determined from limited soil water retention data using the scaling approach when combined with particle-size distribution measurements. This method can potentially be used as an effective tool for identifying soil hydrologic response at catchment scales.  相似文献   

16.
In semi‐arid areas, high‐intensity rainfall events are often held responsible for the main part of soil erosion. Long‐term landscape evolution models usually use average annual rainfall as input, making the evaluation of single events impossible. Event‐based soil erosion models are better suited for this purpose but cannot be used to simulate longer timescales and are usually applied to plots or small catchments. In this study, the openLISEM event‐based erosion model was applied to the medium‐sized (~50 km2) Prado catchment in SE Spain. Our aim was to (i) test the model's performance for medium‐sized catchments, (ii) test the ability to simulate four selected typical Mediterranean rainfall events of different magnitude and (iii) explore the relative contribution of these different storms to soil erosion using scenarios of future climate variability. Results show that because of large differences in the hydrologic response between storms of different magnitudes, each event needed to be calibrated separately. The relation between rainfall event characteristics and the calibration factors might help in determining optimal calibration values if event characteristics are known. Calibration of the model features some drawbacks for large catchments due to spatial variability in Ksat values. Scenario calculations show that although ~50% of soil erosion occurs as a result of high frequency, low‐intensity rainfall events, large‐magnitude, low‐frequency events potentially contribute significantly to total soil erosion. The results illustrate the need to incorporate temporal variability in rainfall magnitude–frequency distributions in landscape evolution models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
贵州龙宫水系坡立谷湖群水文地貌结构与功能特征   总被引:1,自引:0,他引:1  
谭明  梁虹 《湖泊科学》1995,7(1):14-20
龙宫是贵州著名的喀斯特网景点,该区在第四纪构造运动中由于地貌回春,形态逆向发育,水系频繁变迁,喀斯特地块渗漏导致地表流集中转入地下,从而使流水谷地首先盲谷化并逐步形成洼地,在这个过程中,流域地貌复杂响应基面变化,发育了龙宫坡立谷,这些坡立谷的形成与流域形态演化相联系而不同于I.Gams对划分的类型,它们在水系结构中与地下管道相患联,每逢雨季,将大量上游汇水滞蓄盆内,形成季节性喀斯特湖,对下游起到良好的天然调节作用。  相似文献   

18.
Recent emphasis on sediment connectivity in the literature highlights the need for quantitative baseline studies on the patterns and distribution of sediment stores to facilitate understanding of how sediment moves through the landscape at various temporal and spatial scales. This study evaluates the distribution and make‐up of sediment stores within the dramatically incised landscapes of the upper Yellow River, where basin fill deposits up to 1200 m in depth have been extensively reworked following incision by the Yellow River. Field and GIS analyses highlight the discontinuous distribution of sediment stores in Garang catchment, a 236 km2 tributary of the upper Yellow River. Volumetric estimates of sediment storage were obtained through a combination of field mapping, GPR transects, and GIS analyses. Sediment stores cover 20% of the Garang catchment, with an estimated volume of 474.0 × 106 m3, and inferred residence times from OSL and 14C dating of 103–104 years. Fans and terraces reworked from basin fill deposits, and associated cut and fill terrace features, are the dominant forms of sediment storage (~90% of total). A space‐for‐time argument is used to assess stages of basin infilling and subsequent landscape responses to incision, outlining a dramatic example of changes to sediment dynamics and connectivity relationships within the upper Yellow River. Sediments within the upper catchment lie above the regional basin fill level, offering a glimpse of pre‐incisional conditions. This contrasts markedly with the enduring influence of basin incisional history seen within the middle catchment, and the contemporary landscapes of the lower catchment where nearly all available sediment has been excavated from the basin and the landscape effectively operates under post‐incisional conditions. The need to contextualise catchment‐scale studies in terms of landscape history is emphasised. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Young basalt terrains offer an exceptional opportunity to study landscape and hydrologic evolution through time, since the age of the landscape itself can be determined by dating lava flows. These constructional terrains are also highly permeable, allowing one to examine timescales and process of geomorphic evolution as they relate to the partitioning of hydrologic flowpaths between surface and sub‐surface flow. The western slopes of the Cascade Range in Oregon, USA are composed of a thick sequence of lava flows ranging from Holocene to Oligocene in age, and the landscape receives abundant precipitation of between 2000 and 3500 mm per year. On Holocene and late Pleistocene lava landscapes, groundwater systems transmit most of the recharge to large springs (≥0·85 m3 s?1) with very steady hydrographs. In watersheds >1 million years old, springs are absent, and well‐developed drainage networks fed by shallow subsurface stormflow produce flashy hydrographs. Drainage density slowly increases with time in this basalt landscape, requiring a million years to double in density. Progressive hillslope steepening and fluvial incision also occur on this timescale. Springs and groundwater‐fed streams transport little sediment and hence are largely ineffective in incising river valleys, so fluvial landscape dissection appears to occur only after springs are replaced by shallow subsurface stormflow as the dominant streamflow generation mechanism. It is proposed that landscape evolution in basalt terrains is constrained by the time required for permeability to be reduced sufficiently for surface flow to replace groundwater flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous research has emphasized the importance of depression‐focused recharge (DFR) for the timing and location of water recharge to the ORM's aquifers. However, the significance of DFR has not been empirically demonstrated, and the ORM's permeable surficial deposits imply that rainfall and snowmelt will largely recharge vertically rather than move laterally to topographic depressions. The exception may be during winter and spring, when concrete soil frost limits infiltration and encourages overland flow. The potential for DFR was examined for closed depressions under forest and agricultural land covers with similar soils and surficial geology. Air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface‐water levels were monitored during the winter and spring of 2012–2013 and 2013–2014. Recharge (R) was estimated at the crest and base of each depression using a 1‐dimensional water balance approach and surface‐applied Br? tracing. Both forest and agricultural land covers experienced soil freezing; however, forest soils did not develop concrete frost. Conversely, agricultural fields saw concrete frost, overland flow, episodic ponding, and subsequent drainage of rain‐on‐snow and snowmelt inputs in open depressions. Recharge at the base of open depressions exceeded that in surrounding areas by an order of magnitude, suggesting that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Closed topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号