首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Effects of rainfall patterns on runoff and rainfall-induced erosion   总被引:3,自引:0,他引:3  
Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact.Although temporal variation in rainfall intensity(pattern)during natural rainstorms is a common phenomenon,the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes.To address this issue,four simulated rainfall patterns(constant,increasing,decreasing,and increasing-decreasing)with the same total kinetic energy were designed.Two soil types(sandy and sandy loam)were subjected to simulated rainfall using 15 cm×30 cm long detachment trays under infiltration conditions.For each simulation,runoff and sediment concentration were sampled at regular intervals.No obvious difference was observed in runoff across the two soil types,but there were significant differences in soil losses among the different rainfall patterns and stages.For varying-intensity rainfall patterns,the dominant sediment transport mechanism was not only influenced by raindrop detachment but also was affected by raindrop-induced shallow flow transport.Moreover,the efficiency of equations that predict the interrill erosion rate increased when the integrated raindrop impact and surface runoff rate were applied.Although the processes of interrill erosion are complex,the findings in this study may provide useful insight for developing models that predict the effects of rainfall pattern on runoff and erosion.  相似文献   

2.
P. I. A. Kinnell 《水文研究》2005,19(14):2815-2844
Raindrop‐impact‐induced erosion is initiated when detachment of soil particles from the surface of the soil results from an expenditure of raindrop energy. Once detachment by raindrop impact has taken place, particles are transported away from the site of the impact by one or more of the following transport processes: drop splash, raindrop‐induced flow transport, or transport by flow without stimulation by drop impact. These transport processes exhibit varying efficiencies. Particles that fall back to the surface as a result of gravity produce a layer of pre‐detached particles that provides a degree of protection against the detachment of particles from the underlying soil. This, in turn, influences the erodibility of the eroding surface. Good understanding of rainfall erosion processes is necessary if the results of erosion experiments are to be properly interpreted. Current process‐based erosion prediction models do not deal with the issue of temporal variations in erodibility during a rainfall event or variabilities in erodibility associated with spatial changes in dominance of the transport processes that follow detachment by drop impact. Although more complex erosion models may deal with issues like this, their complexity and high data requirement may make them unsuitable for use as general prediction tools. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Soil detachment by rill flow is a key process of rill erosion, modelling this process can help in understanding rill erosion mechanisms. However, many soil detachment models are established on conceptual assumptions rather than experimental data. The objectives of this study were to establish a model of soil detachment by rill flow based on flume experimental data and to quantitatively verify the model. We simulated the process of soil detachment by rill flow in flume experiments with a soil-feeding hopper using loessial soil on steep slopes. Seven flow discharges, six slopes and five sediment loads were combined. Soil detachment capacity, sediment transport capacity, and soil detachment rate by rill flow under different sediment loads were measured. The process of soil detachment by rill flow can be modelled by a dual power function based on soil detachment capacity and transport capacity deficit as variables. The established model exhibited high credibility (NSE=0.97; R2=0.97). The contributions of soil detachment capacity and transport capacity deficit to soil detachment rate by rill flow reached 60% and 36%, respectively. Soil detachment capacity exerted more influence on soil detachment rate than did transport capacity deficit. The performance of the WEPP rill erosion equation is also favourable (NSE=0.95; R2=0.97). The two power exponents in the model we established strengthen the role of soil detachment capacity in soil detachment rate and weaken that for transport capacity deficit. Soil detachment capacity and transport capacity deficit played important roles in the determination of soil detachment rate by rill flow. The results can be applied to implement the numerical modeling and prediction of rill erosion processes on steep loessial hillslopes. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Subsurface flow can be an important process in gully erosion through its impact on decreasing soil cohesion and erosion resistance as soil water content or pressure increases and more directly by the effects of seepage forces on particle detachment and piping. The development of perched water tables fosters lateral flow that can result in seepage at the surface and/or formation of soil pipes by internal erosion of preferential flow paths. Continued internal erosion of soil pipes can lead to gullies, dam and levee failures. However, the processes involved in particle and aggregate detachment from soil pipe walls and transport processes within soil pipes have not been well studied or documented. This paper reviews the limited research on sediment detachment and transport in macropores and soil pipes and applies the knowledge learned from the much more extensive studies conducted on streams and industrial pipes to hydrogeologic conditions of soil pipes. Knowledge gaps are identified and recommendations are made for future research on sediment detachment and transport in soil pipes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Rain‐impacted flows dominate sheet and interrill erosion and are important in eroding soil rich in nutrients and other chemicals which may have deleterious effects on water quality. Erosion in rain‐impacted flow is associated with raindrop detachment followed by transport either by the combination of flow velocity and raindrop impact (raindrop‐induced flow transport, RIFT) or the inherent capacity of the flow to transport detached material. Coarse particles tend to be transported by RIFT, while fine particles tend to be transported without any assistance from raindrop impact. Because the transport process associated with coarse particles is not 100 per cent efficient, it generates a layer of loose particles on the soil surface and this layer protects the underlying soil from detachment. Simulations were performed by modelling the uplift and downstream movement of both fine and coarse particles detached from the soil surface by individual raindrop impacts starting with a surface where no loose material was present. The simulations produced a flush of fine material followed by a decline in the discharge of fine material as the amount of loose material built up on the bed. The decline in the discharge of fine material was accompanied by an increase in the discharge of coarse material. The relative amounts of coarse and fine material discharged in the flow varied with flow velocity and cohesion in the surface of the soil matrix. The results indicate that the discharge of various sized sediments is highly dependent on local soil, rain and flow conditions and that extrapolating the results from one situation to another may not be appropriate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The grain size distribution (GSD) of sediment in comparison with the original soil GSD is discussed under different slopes (5, 15 and 25%) and rainfall intensities (30, 60 and 90 mm h–1 with respective duration of 30, 15 and 10 min) but identical runoff (15 mm). The sediment quantification was carried out by raindrop-induced flow transport (RIFT) or/and transport by flow (FT) using a rainfall simulator and a 6 × 1 m2 erosion plot and a silt loam. The results show a high degree of enrichment for size classes of 2–4 and 4–8 μm and a high degree of depletion for size classes of >63 μm under different slopes and rainfall intensities. In addition, the results show that the experimental enrichment ratio (ER) for particle size <16 μm under different slopes and rainfall intensities was greater than 1, while the ER for particle size >32 μm was less than 1.  相似文献   

7.
Physically based soil erosion simulation models require input parameters of soil detachment and sediment transport owing to the action and interactions of both raindrops and overland flow. A simple interrill soil water transport model is applied to a laboratory catchment to investigate the application of raindrop detachment and transport in interrill areas explicitly. A controlled laboratory rainfall simulation study with slope length simulation by flow addition was used to assess the raindrop detachment and transport of detached soil by overland flow in interrill areas. Artificial rainfall of moderate to high intensity was used to simulate intense rain storms. However, experiments were restricted to conditions where rilling and channelling did not occur and where overland flow covered most of the surface. A simple equation with a rainfall intensity term for raindrop detachment, and a simple sediment transport equation with unit discharge and a slope term were found to be applicable to the situation where clear water is added at the upper end of a small plot to simulate increased slope length. The proposed generic relationships can be used to predict raindrop detachment and the sediment transport capacity of interrill flow and can therefore contribute to the development of physically‐based erosion models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Many numerical landform evolution models assume that soil erosion by flowing water is either purely detachment‐limited (i.e. erosion rate is related to the shear stress, power, or velocity of the flow) or purely transport‐limited (i.e. erosion/deposition rate is related to the divergence of shear stress, power, or velocity). This paper reviews available data on the relative importance of detachment‐limited versus transport‐limited erosion by flowing water on soil‐mantled hillslopes and low‐order valleys. Field measurements indicate that fluvial and slope‐wash modification of soil‐mantled landscapes is best represented by a combination of transport‐limited and detachment‐limited conditions with the relative importance of each approximately equal to the ratio of sand and rock fragments to silt and clay in the eroding soil. Available data also indicate that detachment/entrainment thresholds are highly variable in space and time in many landscapes, with local threshold values dependent on vegetation cover, rock‐fragment armoring, surface roughness, soil texture and cohesion. This heterogeneity is significant for determining the form of the fluvial/slope‐wash erosion or transport law because spatial and/or temporal variations in detachment/entrainment thresholds can effectively increase the nonlinearity of the relationship between sediment transport and stream power. Results from landform evolution modeling also suggest that, aside from the presence of distributary channel networks and autogenic cut‐and‐fill cycles in non‐steady‐state transport‐limited landscapes, it is difficult to infer the relative importance of transport‐limited versus detachment‐limited conditions using topography alone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This study developed a one‐dimensional model of downslope rain splash transport based on field experiments and previous studies. The developed model considers soil detachment processes, ground cover, probability densities, and the effect of overland run‐off in preventing detachment. Field monitoring was conducted to observe precipitation run‐off, ground cover, and sediment production on steep hillslopes. Field‐observed data were used to develop the splash detachment rate equation, probability densities for splash transport, and the maximum splash transport distance. Observed and estimated splash transport showed overall agreement, with some differences for small storm events or events with relatively low intensity, probably caused by variation of overland run‐off depth and connectivity as well as differences in soil surface cohesion at various degrees of wetness. Our model can provide insights on the interactions among rainfall intensity, soil surface condition, soil wetness, and splash transport on forested hillslopes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Soil erosion is a global environmental problem. To quantify water erosion rates at the field, hillslope or catchment scale, several spatially-distributed soil erosion models have been developed. The accuracy of those models depends largely on the sediment detachment and transport functions used, many of which were developed from empirical research. In this paper, the physical basis of the available sediment detachment and transport functions is reviewed, and their application boundaries determined. Well-known and widely-used sediment detachment and transport functions are discussed on the basis of composite force predictors, i.e. shear stress, stream power, unit stream power and effective stream power, and their suitability is elucidated based on information in the literature. It was found that only a few sediment detachment functions are available, and those have been poorly tested. Most erosion models ignore direct calculation of sediment detachment, but use the sediment transport capacity deficit approach to estimate detachment rate. Many more sediment transport functions are available that also tested better for overland flow conditions. However, our tests did not result in a single function that appeared to perform best under a range of experimental conditions. The unit stream power-based functions developed by Govers seem to be the most promising ones for water erosion modelling. It is therefore recommended to evaluate the performance of existing sediment transport functions with more detailed field and laboratory datasets.
Editor Z.W. Kundzewicz  相似文献   

11.
In arid and semi‐arid rangeland environments, an accurate understanding of runoff generation and sediment transport processes is key to developing effective management actions and addressing ecosystem response to changes. Yet, many primary processes (namely sheet and splash and concentrated flow erosion, as well as deposition) are still poorly understood due to a historic lack of measurement techniques capable of parsing total soil loss into these primary processes. Current knowledge gaps can be addressed by combining traditional erosion and runoff measurement techniques with image‐based three‐dimensional (3D) soil surface reconstructions. In this study, data (hydrology, erosion and high‐resolution surface microtopography changes) from rainfall simulation experiments on 24 plots in saline rangelands communities of the Upper Colorado River Basin were used to improve understanding on various sediment transport processes. A series of surface change metrics were developed to quantify and characterize various erosion and transport processes (e.g. plot‐wide versus concentrated flow detachment and deposition) and were related to hydrology and biotic and abiotic land surface characteristics. In general, erosivity controlled detachment and transport processes while factors modulating surface roughness such as vegetation controlled deposition. The extent of the channel network was a positive function of slope, discharge and vegetation. Vegetation may deflect runoff in many flow paths but promoted deposition. From a management perspective, this study suggests that effective runoff soil and salt load reduction strategies should aim to promote deposition of transported sediments rather than reducing detachment which might not be feasible in these resource‐limited environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Despite numerous studies, the effect of slope on interrill erosion is not clearly established. Several interactions exist between erosion parameters that are not taken into account under experimental laboratory measurements and results need to be validated in the field. The influence of slope steepness (2 to 8 per cent) on soil loss for a crusted interrill area and the detachment and transport processes involved in the interaction between slope, rain characteristics and plot size were investigated. Sediment discharge and runoff rates were measured in bounded plots (1 m2 and 10 m2) under natural and simulated rainfall, allowing the analysis of a combination of detachment and transport processes at various scales in the field. Runoff rate increased from 20 to 90 per cent with increasing slope and rain intensity for both plot sizes, whereas sediment concentration increased from 2 to 6 g l−1 with increasing slope only for the 10 m2 plots. At the 1 m2 scale, erosion was transport‐limited due to the reduced rain‐impacted flow. Interactions between slope angle and rain intensity were observed for detachment and transport processes in interrill erosion. Results show the importance of an adapted experimental set‐up to get reference data for interrill erosion model development and validation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
In the rill erosion process, run-on water and sediment from upslope areas, and rill flow hydraulic parameters have significant effects on sediment detachment and transport. However, there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes, especially in the Loess Plateau of China. A dual-box system, consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment, and of rill flow hydraulic parameters on the rill erosion process. The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel, and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity. Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow. Upslope runoff had an important effect on rill flow hydraulic parameters, such as rill flow velocity, hydraulic radius, Reynolds number, Froude number and the Darcy-Weisbach resistance coefficient. The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity, Reynolds number and Froude number caused by upslope runoff increased. In contrast, the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff. These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.  相似文献   

14.
A new physically based hydrological and soil erosion model has been developed, which can be used for planning and conservation purposes: the LImburg Soil Erosion Model (LISEM). The LISEM model is one of the first examples of a physically based model that is completely incorporated in a raster Geographical Information System. This incorporation facilitates easy application in larger catchments, improves the user friendliness by avoiding conversion routines and allows remotely sensed data to be used. Processes incorporated in the model are rainfall, interception, surface storage in micro-depressions, infiltration and vertical movement of water in the soil, overland flow, channel flow, detachment by rainfall and throughfall, detachment by overland flow and transport capacity of the flow. Special attention has been given to the influence of tractor wheelings, small roads and surface sealing. Vertical movement of water in the soil is simulated using the Richard's equation. Optionally, the user can choose the Holtan or the Green–Ampt infiltration model. For the distribution flow routing, a four-point finite-difference solution of the kinematic wave is used together with Manning's equation.  相似文献   

15.
16.
The development and application of the physically-based and spatially-distributed mathematical model CTSS8-SED is presented. The model simulates hydrologic-hydraulic processes produced by storm events and related soil erosion and sediment transport processes at basin scale in lowland areas. The model simulates (i) storm runoff,(ii) soil detachment by raindrop impact and overland flow (gross sediment yield),(iii) sediment transport by overland flow and associated erosion-deposition processes and (iv) sediment transport by stream flow and riverbed erosion-deposition processes. A quasi two-dimensional representation of water flow and sediment transport routing is made by means of interconnected cells approach. The model is applied to simulate two flooding events in the Luduea Creek basin (Santa Fe, Argentina) occurred in April 1994 and March 2007 due to extraordinary rainfalls.  相似文献   

17.
Distributed physically based erosion and phosphorus (P) transport models, run by the overland flow model described in Taskinen and Bruen (2006. Hydrological Processes 20 : this issue), are described. In the erosion model, the additional components to the basic model were the outflow of the particles by infiltration and a new model component, i.e. deposition when rainfall stops. Two ways of calculating the shielding factor due to the flow depth were compared. The P transport model had both dissolved P (DP) and particulate P (PP) components. The processes included in the DP model were desorption from the soil surface, advection, storage in the overland flow and infiltration. The PP model accounted for advection, storage in the flow, infiltration, detachment from the soil surface by flow and rainfall and deposition both when transport capacity of suspended solids (SS) is exceeded and when rainfall ceases. When the models were developed and validated in small agricultural fields of cohesive soil types in southern Finland, comparisons were made between corresponding processes and the significance of added components were estimated in order to find out whether increased model complexity improves the model performance. The sedigraphs were found to follow the dynamics of rainfall, emphasizing the importance of the rainfall splash component. The basic model was too slow to react to changes in rainfall and flow rates, but infiltration and deposition that acts during the cessation in rainfall improved the model significantly by enabling the modelled SS to fall sharply enough. The shielding effect of flow depth from the splash detachment was found to play a significant role. Transport capacity should also be included in erosion models when they are applied to cohesive soils. In this study, the Yalin method worked well. A strong correlation was obvious between the measured SS and total P concentrations, indicating that the main form of P in runoff is PP. This emphasizes the importance of a good sediment transport model in P transport modelling. The submodel used for DP desorption from the soil surface produced plausible results without any calibration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Vito Ferro 《水文研究》1998,12(12):1895-1910
An equation for evaluating the sediment transport capacity of overland flow is a necessary part of a physically based soil erosion model describing sediment detachment and transport as distributed processes. At first, for the hydraulic conditions of small-scale and large-scale roughness, the sediment transport capacity relationship used in the WEPP model is calibrated by Yalin and Govers' equation. The analysis shows that the transport coefficient Kt depends on the Shields parameter, Y, according to a semi-logarithmic (Yalin) or a linear (Govers) equation. The reliability of the semi-logarithmic equation is verified by Smart's, and Aziz and Scott's experimental data. Then the Low's formula, whose applicability is also proved by Smart's, and Aziz and Scott's data, is transformed as a stream power equation in which a stream power coefficient, KSP, depending on Shields parameter, slope, sediment and water-specific weight, appears. A relationship between transport capacity and effective stream power is also proposed. Finally, the influence of rainfall on sediment transport capacity and the prediction of critical shear stress corresponding to overland flow are examined. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
A series of large rainfall simulator experiments was conducted in 2002 and 2003 on a small plot located in an experimental catchment in the North Island of New Zealand. These experiments measured both runoff and sediment transport under carefully controlled conditions. A physically based hydrological modelling system (SHETRAN) was then applied to reproduce the observed hydrographs and sedigraphs. SHETRAN uses physically based equations to represent flow and sediment transport, and two erodibility coefficients to model detachment of soil particles by raindrop erosion and overland flow erosion. The rate of raindrop erosion also depended on the amount of bare ground under the simulator; this was estimated before each experiment. These erodibility coefficients were calibrated systematically for summer and winter experiments separately, and lower values were obtained for the summer experiments. Earlier studies using small rainfall simulators in the vicinity of the plot also found the soil to be less erodible in summer and autumn. Limited validation of model parameters was carried out using results from a series of autumn experiments. The modelled suspended sediment load was also sensitive to parameters controlling the generation of runoff from the rainfall simulator plot; therefore, we found that accurate runoff predictions were important for the sediment predictions, especially from the experiments where the pasture cover was good and overland flow erosion was the dominant mechanism. The rainfall simulator experiments showed that the mass of suspended sediment increased post‐grazing, and according to the model this was due to raindrop detachment. The results indicated that grazing cattle or sheep on steeply sloping hill‐country paddocks should be carefully managed, especially in winter, to limit the transport of suspended sediment into watercourses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Hydrological impact of Eucalyptus plantation in India   总被引:1,自引:0,他引:1  
A brief review is given of the results of hydrological studies carried out in southern India on the effects of plantations of Eucalyptus and other fast growing exotic tree species on water resources, erosion and soil nutrients at sites of differing rainfall and soil depth in Karnataka. New results on the impacts of the plantations on raindrop-induced erosion and preliminary results from studies that are aimed at improving the water use efficiency of the plantations are also presented.

The erosion studies indicate that soil detachment resulting from net rainfall beneath Eucalyptus camaldulensis will be greater than beneath Pinus caribaea but less than that beneath the indigenous species, Tectona grandis.

The water use efficiency studies, which make use of a controlled environment facility, have confirmed that in the dry zone of southern India water availability is the principal limiting factor on growth although, when water is available, nutrient limitations become important. Removal of both water and nutrient stress results typically in a fivefold increase in volume growth for the first year of growth.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号