首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple Tuned Mass Dampers (MTMD's) consisting of many tuned mass dampers (TMD's) with distributed natural frequencies are considered for suppressing effectively the harmonically forced single mode response of structures. The fundamental characteristics of MTMD's are investigated analytically with the parameters of the covering frequency range of MTMD's, the damping ratio of each TMD and the total number of TMD's. The effectiveness and the robustness of MTMD's are also discussed in comparison with those of the usual single TMD. It is found that there exists an optimum MTMD for the given total number of TMD's with the optimum frequency range and the optimum damping ratio and that the optimum MTMD is more effective than the optimum single TMD. As for the robustness, it is also clarified that a MTMD can be much more robust than a single TMD while keeping the same level of effectiveness as the optimum single TMD.  相似文献   

2.
Recently, several new optimum loading patterns have been proposed by researchers for fixed‐base systems while their adequacy for soil–structure systems has not been evaluated yet. Through intensive dynamic analyses of multistory shear‐building models with soil–structure interaction subjected to a group of 21 artificial earthquakes adjusted to soft soil design spectrum, the adequacy of these optimum patterns is investigated. It is concluded that using these patterns the structures generally achieve near optimum performance in some range of periods. However, their efficiency reduces as soil flexibility increases especially when soil–structure interaction effects are significant. In the present paper, using the uniform distribution of damage over the height of structures, as the criterion, an optimization algorithm for seismic design of elastic soil–structure systems is developed. The effects of fundamental period, number of stories, earthquake excitation, soil flexibility, building aspect ratio, damping ratio and damping model on optimum distribution pattern are investigated. On the basis of 30,240 optimum load patterns derived from numerical simulations and nonlinear statistical regression analyses, a new lateral load pattern for elastic soil–structure systems is proposed. It is a function of the fundamental period of the structure, soil flexibility and structural slenderness ratio. It is shown that the seismic performance of such a structure is superior to those designed by code‐compliant or recently proposed patterns by researchers for fixed‐base structures. Using the proposed load pattern in this study, the designed structures experience up to 40% less structural weight as compared with the code‐compliant or optimum patterns developed based on fixed‐base structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soilstructure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify theSSI effect on the seismic performance ofTMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.  相似文献   

4.
A simple model for the seismic response of a one-storey structure subjected to active control in the presence of soil–structure interaction effects is presented. The approach is based on the successive use of equivalent 1-DOF oscillators which account for the effects of control and soil–structure interaction. Simple expressions for these oscillators based on exact analytical solutions of the control equations and approximate solutions of the interaction equations are presented. The study includes an evaluation of the effects of soil–structure interaction on the seismic response of actively controlled structures in which the control gains have been determined with and without inclusion of soil–structure interaction effects. A simple procedure to include the interaction effects on the control gains is also presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Dynamic characteristics of structures — viz. natural frequencies, damping ratios, and mode shapes — are central to earthquake‐resistant design. These values identified from field measurements are useful for model validation and health‐monitoring. Most system identification methods require input excitations motions to be measured and the structural response; however, the true input motions are seldom recordable. For example, when soil–structure interaction effects are non‐negligible, neither the free‐field motions nor the recorded responses of the foundations may be assumed as ‘input’. Even in the absence of soil–structure interaction, in many instances, the foundation responses are not recorded (or are recorded with a low signal‐to‐noise ratio). Unfortunately, existing output‐only methods are limited to free vibration data, or weak stationary ambient excitations. However, it is well‐known that the dynamic characteristics of most civil structures are amplitude‐dependent; thus, parameters identified from low‐amplitude responses do not match well with those from strong excitations, which arguably are more pertinent to seismic design. In this study, we present a new identification method through which a structure's dynamic characteristics can be extracted using only seismic response (output) signals. In this method, first, the response signals’ spatial time‐frequency distributions are used for blindly identifying the classical mode shapes and the modal coordinate signals. Second, cross‐relations among the modal coordinates are employed to determine the system's natural frequencies and damping ratios on the premise of linear behavior for the system. We use simulated (but realistic) data to verify the method, and also apply it to a real‐life data set to demonstrate its utility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil–structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near‐resonance condition the effects of soil–structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil–structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The investigation reported in this paper studies the effects of soil–structure interaction (SSI) on the seismic response and damage of building–foundation systems. A simple structural model is used for conducting a parametric study using a typical record obtained in the soft soil area of Mexico City during the 1985 earthquake. Peak response parameters chosen for this study were the roof displacement relative to the base and the hysteretic energy dissipated by the simple structural model. A damage parameter is also evaluated for investigating the SSI effects on the seismic damage of buildings. The results indicate that in most cases of inelastic response, SSI effects can be evaluated considering the rigid‐base case and the SSI period. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Significant seismic events have occurred around the world during winter months in regions where cold temperatures cause ground freezing. Current seismic design practice does not address the effects of cold temperatures in the seasonally frozen areas. Since many elevated water tank structures in cold regions are located in seismic active zones, determining the effect of seasonally frozen soil on the stochastic response of elevated water tank structures subjected to random seismic excitation is an important structural consideration. A three dimensional finite element model, which considers viscous boundaries, was built up to obtain the stochastic seismic behavior of an elevated water tank–fluid–soil interaction system for frozen soil condition. For this model, the power spectral density function represents random ground motion applied to each support point of the three dimensional finite element model of the elevated water tank–fluid–soil interaction system. Numerical results show that the soil temperature affects the seismic response of the elevated water tank; whereas the variation in the thickness of the frozen soil causes insignificant changes on the response. In addition, the effect of the variation in water tank’s fullness on the stochastic response of the coupled system is investigated in the study. As a result, the seasonal frost changes the foundation soil stiffness and may impact seismic behavior of the water tank.  相似文献   

9.
This paper presents the probabilistic seismic performance and loss assessment of an actual bridge–foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP's), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismic risk of the system.It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.  相似文献   

10.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper studies the effect of soil–structure interaction (SSI) on the seismic risk estimates of buildings. Risk, in this context, denotes the probability distribution of seismic monetary loss due to structural and nonstructural damage. The risk analysis here uncovers the probability that SSI is beneficial, detrimental, or uninfluential on seismic losses. The analyses are conducted for a wide range of buildings with different structural systems, numbers of stories, and foundation sizes on various soil types. A probabilistic approach is employed to account for prevailing sources of uncertainty, i.e., those in ground motion and in the properties of the soil–structure system. In this approach, probabilistic models are employed to predict the response, damage, and repair cost of buildings. To properly account for the ground motion uncertainty, a suite of nearly 7000 accelerograms recorded on soil is employed. It is concluded that structures on very soft soils are extremely likely to incur smaller losses due to SSI, which is in line with the common belief that SSI is a favorable effect for such systems. However, the results for buildings on moderately soft soils reveal a considerable probability, up to 0.4, that SSI has an adverse effect on the structure and increases the seismic losses.  相似文献   

14.
Various types of passive control systems have been used to suppress the seismic response of structures in recent years. Among these systems, Tuned Liquid Column Dampers (TLCDs) dissipate the input earthquake energy by combining the effects of the movement of the liquid mass in the container, the restoring force on the liquid due to the gravity loads and the damping due to the liquid movement through orifices. In this study, the effects of seismic excitation characteristics such as frequency content and soil condition on the seismic performance of TLCDs are investigated using nonlinear time-history analyses. In this regard, among the past earthquake ground motion records of Iran, 16 records with different parameters were selected. In the structural model developed, the attached TLCD is simulated as a Tuned Mass Damper (TMD) having the same vibration period and damping ratio as the original TLCD. The numerical results show that the seismic excitation characteristics have a substantial role on the displacement reduction capability of TLCDs and they should be considered accordingly in the design of TLCDs.  相似文献   

15.
An analytical model is developed to evaluate performance characteristics of unidirectional seismic simulators (shaking tables). The validity of the model is verified with experimental measurements of the frequency response of the shaking table at the Catholic University of Peru. Interaction effects between shaking table and structure are first studied by analysing the response of a two DOF (degree of freedom) oscillator with mechanical properties representative of the actuator-table-structure system. A single DOF viscoelastic oscillator representing the structural test specimen is then included in the analytical model of the seismic simulator, and the behaviour of the combined system is evaluated, in the frequency domain, in terms of response stability and accuracy of reproduction of the command signal. Numerical simulations of system response under different load conditions are subsequently performed in order to study the influence of shaking table and test structure characteristics on the interaction phenomenon. The results obtained explain some of the performance degradation observed in seismic simulation tests involving very heavy structures and provide guidelines for the design of more reliable shaking table systems.  相似文献   

16.
The optimal design and effectiveness of three control systems, tuned viscous mass damper(TVMD), tuned inerter damper(TID) and tuned mass damper(TMD), on mitigating the seismic responses of base isolated structures, were systematically studied. First, the seismic responses of the base isolated structure with each control system under white noise excitation were obtained. Then, the structural parameter optimizations of the TVMD, TID and TMD were conducted by using three different objectives. The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses, including the base shear of the BIS, the absolute acceleration of structural SDOF, and the relative displacement between the base isolation floor and the foundation. Finally, considering the superstructure as a structural MDOF, a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations. The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases, and the effectiveness of TID was always better than TMD with the same mass ratio. The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD. Furthermore, the TVMD, when compared with TMD and TID, had better activation sensitivity and a smaller stroke.  相似文献   

17.
Interaction of bridge structures with the adjacent embankment fills and pile foundations is generally responsible for response modification of the system to strong ground excitations, to a degree that depends on soil compliance, support conditions, and soil mass mobilized in dynamic response. This paper presents a general modeling and assessment procedure specifically targeted for simulation of the dynamic response of short bridges such as highway overcrossings, where the embankment soil–structure interaction is the most prevalent. From previous studies it has been shown that in this type of interaction, seismic displacement demands are magnified in the critical bridge components such as the central piers. This issue is of particular relevance not only in new design but also in the assessment of the existing infrastructure. Among a wide range of issues relevant to soil–structure interaction, typical highway overcrossings that have flexible abutments supported on earth embankments were investigated extensively in the paper. Simulation procedures are proposed for consideration of bridge‐embankment interaction effects in practical analysis of these structures for estimation of their seismic performance. Results are extrapolated after extensive parametric studies and are used to extract ready‐to‐use, general, and parameterized capacity curves for a wide range of possible material properties and geometric characteristics of the bridge‐embankment assembly. Using two instrumented highway overpasses as benchmark examples, the capacity curves estimated using the proposed practical procedures are correlated successfully with the results of explicit incremental dynamic analysis, verifying the applicability of the simple tools developed herein, in seismic assessment of existing short bridges. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
本文设计并完成了考虑土与结构相互作用的结构减震控制大型振动台模型试验。通过对四种结构形式的对比试验,探讨了土与结构相互作用(SSI)效应对结构地震反应的影响以及调谐质量阻尼器(TMD)在刚性和柔性地基条件下对主体结构的减震效应。通过比较同一地震动作用下主体结构在刚性和柔性两种地基条件下的地震反应,可知:SSI效应具有降低和提高结构减震控制效果的双重作用,其综合效果与输入地震动的频谱特性、加速度峰值大小有关。由于SSI效应在结构地震反应中发挥着双重的作用,因而使得基于刚性地基假定下设计的TMD减震控制系统在柔性地基条件下的控制效果不太理想,甚至会出现负面效应。本文还探讨了在柔性地基条件下影响结构减震控制效果的一些因素。  相似文献   

19.
对4榀相同特性的砖墙进行不同程度的酸雨腐蚀试验及低周反复荷载试验,得出其在不同腐蚀循环次数下的滞回曲线。基于陆新征-曲哲恢复力模型对砖墙试件进行模拟分析,并与试验结果进行对比,验证得出三弹簧单元模型能够较准确预测砌体构件的滞回性能。利用三弹簧单元模型对不同腐蚀次数下砌体结构进行IDA分析,得出不同腐蚀次数下砌体结构的易损性曲线,通过对"小震"、"中震"、"大震"下结构失效概率的分析得出,酸雨腐蚀能够严重影响结构的力学性能,使得结构的抗震性能显著下降。  相似文献   

20.
This paper investigates the dynamic response of three sample buildings belonging to the Seismic Observatory for Structures, the Italian network for the permanent seismic monitoring of strategic structures, managed by the Italian Department of Civil Protection. The case studies cover different building types that could loosely represent the Italian building stock, with a special emphasis on cultural heritage and masonry structures. Observed under a low‐intensity seismic swarm comprising about 30 aftershocks after a main event, the three buildings are analysed through an input–output, model‐driven linear dynamic identification procedure, depicting the relation between the shaking level at the site and the variation of the equivalent structural modal parameters, while keeping into account the effects of soil–structure interaction. Finite element models will be used to investigate one of the case studies and to compare the law of variation of the structural modal parameters with respect to simplified models proposed by technical standards. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号