首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The equations governing the dynamic behavior of saturated porous media as well as a finite element spatial discretization of these equations are summarized. A three-parameter time integration scheme called the Hilber–Hughes–Taylor α-method is used together with a predictor/multi-corrector algorithm, instead of the widely used Newmark's method, to integrate the spatially discrete finite element equations. The new time integration scheme possess quadratic accuracy and desirable numerical damping characteristics. The proposed numerical solution and bounding surface plasticity theory to describe the constitutive behaviour of soil have been implemented as the computer code DYSAC2. Predictions made by DYSAC2 code are verified using dynamic centrifuge test results for a clay embankment. Importance of initial state of a soil on its dynamic behaviour is demonstrated.  相似文献   

3.
Aquifer contamination by organic chemicals in subsurface flow through soils due to leaking underground storage tanks filled with organic fluids is an important groundwater pollution problem. The problem involves transport of a chemical pollutant through soils via flow of three immiscible fluid phases: namely air, water and an organic fluid. In this paper, assuming the air phase is under constant atmospheric pressure, the flow field is described by two coupled equations for the water and the organic fluid flow taking interphase mass transfer into account. The transport equations for the contaminant in all the three phases are derived and assuming partition equilibrium coefficients, a single convective – dispersive mass transport equation is obtained. A finite element formulation corresponding to the coupled differential equations governing flow and mass transport in the three fluid phase porous medium system with constant air phase pressure is presented. Relevant constitutive relationships for fluid conductivities and saturations as function of fluid pressures lead to non-linear material coefficients in the formulation. A general time-integration scheme and iteration by a modified Picard method to handle the non-linear properties are used to solve the resulting finite element equations. Laboratory tests were conducted on a soil column initially saturated with water and displaced by p-cymene (a benzene-derivative hydrocarbon) under constant pressure. The same experimental procedure is simulated by the finite element programme to observe the numerical model behaviour and compare the results with those obtained in the tests. The numerical data agreed well with the observed outflow data, and thus validating the formulation. A hypothetical field case involving leakage of organic fluid in a buried underground storage tank and the subsequent transport of an organic compound (benzene) is analysed and the nature of the plume spread is discussed.  相似文献   

4.
钢纤维混凝土深梁非线性有限元分析在ANSYS中的实现   总被引:3,自引:0,他引:3  
徐礼华  池寅  李荣渝  苏洁 《岩土力学》2008,29(9):2577-2582
运用大型有限元软件ANSYS对钢纤维混凝土深梁进行非线性分析,详细地探讨了钢纤维混凝土和钢筋的本构模型、单元特性,并基于Nilson黏结滑移理论,考虑钢筋与钢纤维混凝土之间的相互作用。采用ANSYS参数化设计语言(APDL)参数化建模,完成了非线性分析。与试验结果比较表明,在ANSYS中钢纤维混凝土采用Solid65单元、钢筋采用Pipe20单元及其相应的本构关系和破坏准则模拟钢纤维混凝土受力全过程,并用Combin39三维非线性弹簧单元模拟钢筋与钢纤维混凝土之间的黏结滑移可取得满意的结果。  相似文献   

5.
In finite element calculations the constitutive model plays a key role. The evaluation of the stress response of the constitutive relation for a given strain increment, which is a time integration in the case of models of the rate type, is a typical sub task in such calculations. Adaptive behaviour of the time integration is essential to assure numerical stability and to control the accuracy of the solution. An adaptive second order semi-implicit method is developed in this paper. Its numerical behaviour is compared with an adaptive second order explicit scheme. The two proposed methods control the local error and guarantee numerical stability of the time integration. We include several numerical geotechnical element tests using hypoplasticity with intergranular strain. The element tests simulate the behaviour of a finite element method based on the displacement formulation.  相似文献   

6.
荚颖  唐小微  栾茂田 《岩土力学》2010,31(8):2643-2647
通过构造Biot固结理论u-p方程的无网格伽辽金-有限元耦合方法,对砂土液化变形问题进行了数值模拟。对于饱和砂土,采用Oka等提出的弹塑性本构模型,同时采用更新的Lagrange计算格式推导了控制方程。耦合方法能够发挥有限元和无网格各自的优点,既避免了由于单元变形扭曲而引起的计算中断,也可节约计算时间,算例验证了该方法在地震液化问题中的有效性。  相似文献   

7.
The governing equations for an elasto‐plastic constitutive model for frictional materials such as soil, rock, and concrete are presented, and the incremental form is indicated in preparation for implementation of the model in a user‐defined module for finite element calculations. This isotropic, work‐hardening and ‐softening model employs a single yield surface, it incorporates non‐associated plastic flow, and its capability of capturing the behaviour of different types of frictional materials under various three‐dimensional conditions has been demonstrated by comparison with measured behaviour, as presented in the literature. The incrementalization procedure is indicated and the resulting equations for the single hardening model are presented together with parameters for a dense sand. Following the implementation of the model, these parameters are used for evaluation of different integration schemes as presented in a companion paper by Jakobsen and Lade (Int. J. Numer. Anal. Meth. Geomech. 2002; 26 :661). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The paper presents detailed FE simulation results of concrete elements under mixed‐mode failure conditions according to the so‐called shear‐tension test by Nooru‐Mohamed, characterized by curved cracks. A continuous and discontinuous numerical two‐dimensional approach was used. In order to describe the concrete's behaviour within continuum mechanics, two different constitutive models were used. First, an elasto‐plastic model with isotropic hardening and softening was assumed. In a compression regime, a Drucker–Prager criterion with a non‐associated flow rule was used. In turn, in a tensile regime, a Rankine criterion with an associated flow rule was adopted. Second, an isotropic damage constitutive model was applied with a single scalar damage parameter and different definitions of the equivalent strain. Both constitutive laws were enriched by a characteristic length of micro‐structure to capture properly strain localization. As an alternative approach, the extended finite element method was used. Our results were compared with the experimental ones and with results of other FE simulations reported in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Successful numerical simulation of geosynthetic-reinforced earth structures depends on selecting proper constitutive models for soils, geosynthetics and soil–geosynthetic interfaces. Many constitutive models are available for modelling soils and geosynthetics. However, constitutive models for soil–geosynthetic interfaces which can capture most of the important characteristics of interface response are not readily available. In this paper, an elasto-plastic constitutive model based on the disturbed state concept (DSC) for geosynthetic–soil interfaces has been presented. The proposed model is capable of capturing most of the important characteristics of interface response, such as dilation, hardening and softening. The behaviour of interfaces under the direct shear test has been predicted by the model. The present model has been implemented in the finite element procedure in association with the thin-layer element. Five pull-out tests with two different geogrids have been simulated numerically using FEM. For the calibration of the constitutive models used in FEM, the standard laboratory tests used are: (1) triaxial tests for the sand, (2) direct shear tests for the interfaces and (3) axial tension tests for the geogrids. The results of the finite element simulations of pull-out tests agree well with the test data. The proposed model can be used for the stress-deformation study of geosynthetic-reinforced embankments through numerical simulation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
A general approach for obtaining the consistent tangent operator for constitutive rate equations is presented. The rate equations can be solved numerically by the user's favourite time integrator. In order to obtain reliable results, the substepping in integration should be based on a control of the local error. The main ingredient of the consistent tangent operator, namely the derivative of the stress with respect to the strain increment must be computed simultaneously with the same integrator, applied to a numerical approximation of the variational equations. This information enables finite‐element packages to assemble a consistent tangent operator and thus guarantees quadratic convergence of the equilibrium iterations. Several numerical examples with a hypoplastic constitutive law are given. As numerical integrator we used a second‐order extrapolated Euler method. Quadratic convergence of the equilibrium iteration is shown. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
周爱兆  卢廷浩  姜朋明 《岩土力学》2012,33(9):2656-2662
基于广义位势理论建立的岩土体材料本构模型以及岩土体材料与结构接触面本构模型原理相通,只是前者是在三轴剪切试验条件下的三维应力空间建模,后者是在单剪试验条件下的二维应力空间建模。单剪试验条件下土与结构的接触面问题可以看作是法向与切向应力空间上的二维问题,其试验结果可以表达成由应力、应变组成的二维矢量。结合接触面力学特性,确定应力空间中的势函数以及塑性状态方程,可以推导出双重势面接触面弹塑性本构方程的一般表达式。进一步取两个势函数分别为法向应力和切向应力,建立简化双重势面接触面弹塑性模型的本构方程,该方程可直接应用于有限元等数值分析。结合试验实例对建模方法的合理性进行验证,模型拟合效果良好。研究结果表明,基于广义塑性位势理论建立接触面本构模型无需推求塑性势函数和屈服函数,可以直接得到弹塑性刚度矩阵,且建模方便。  相似文献   

12.
A new finite element program is introduced and its predictive capabilities are compared to results from two long-term, drained laboratory creep tests on a deep sea clay. The constitutive behaviour is based on Cam clay critical state plasticity theory with creep and time-dependent hardening. Creep is computed using either Singh–Mitchell's three-dimensional equation or Taylor's secondary compression relationship. The experimental creep data include a triaxial specimen subjected to two deviatoric stress increments and a one-dimensional consolidation specimen subjected to three vertical stress increments. In addition, the pore pressure behaviour following an increase in stress is examined in the triaxial sample. Predictions compare favourably to test data, which provide confidence for applying the chosen constitutive model and numerical formulation to solve seabed-related problems on the continental slope that are of interest to geologists, the oil industry and the navy, among others.  相似文献   

13.
High‐performance concrete is a widely used building material for tunnels, high‐rise buildings, nuclear plants etc. When these structures are exposed to fire, high‐performance concrete is prone to spalling. Moisture migration is believed to be one of the processes directly related to this phenomenon. In this paper, moisture profiles measured experimentally from neutron radiography on heated concrete are compared with results from a numerical model implemented in the finite element code Cast3M. The water loss measured experimentally, and the numerical results suggest that the commonly used constitutive laws for dehydration and water retention curves need to be reconsidered. The influence of these constitutive laws on the moisture migration is investigated. The dehydration constitutive law plays an important role on the dehydration front but has negligible effect on the moisture accumulation behind this front. By contrast, the water retention curves do not influence the dehydration front but affect the quantity and location of water condensation. The role of the permeability is also discussed.  相似文献   

14.
15.
A number of phenomena and processes in geosciences can be summarized by second order partial differential equations. The major numerical methods for their solution include the classical finite difference method and the finite element method newly developed in the last two or three decades. Since 1977 the author has proved that for the Laplace and Poisson equations, these two methods are identical and are different only in the process of formulation. For transient problems, such as heat conduction in the earth and the groundwater and oil-gas unsteady flow in porous media, there are some differences in resulting linear algebraic euqations. In general, two methods give similar results, but when the time step is decreased to some extent, the resulting algebraic equation will be consistent with the anti-heat conduction equation rather than the original heat conduction equation. This is the reason why unrealistic potentials are produced by the finite element method. Such a problem can be overcome by using the  相似文献   

16.
A comprehensive numerical study on finite element implementation of hypoplastic models is presented. Two crucial aspects, local integration of the constitutive equations (the local problem) and forming tangent operators for Newton–Raphson iteration (the global problem), are investigated. For solving the local problem, different integration algorithms, including explicit and implicit methods, are examined using tri-axial compression tests and incremental stress response envelopes, as well as typical boundary value problems. For solving global problems, three different ways of generating the tangent operator are compared. The numerical evidences indicate that, in terms of accuracy, efficiency and robustness, explicit methods with substepping and error control are the best choices for constitutive integration of hypoplastic models while the so-called continuum tangent operators have certain advantages over two other types of numerically-generated consistent tangent operators.  相似文献   

17.
Three-dimensional behaviour of an embankment on soft soils incorporating vertical drains is analysed by a numerical model based on the finite element method. The model, which incorporates the Biot’s consolidation theory (coupled formulation of the flow and equilibrium equations) and constitutive relations simulated by the pqθ critical state model, is applied on both the embankment with vertical drains (three-dimensional analysis) and the same problem but without vertical drains (two-dimensional analysis). Special emphasis is given to the analysis, during and after the construction period, of the excess pore pressures, settlements, horizontal displacements and stress levels.  相似文献   

18.
In recent years, a number of constitutive models have been proposed to describe mathematically the mechanical response of natural clays. Some of these models are characterized by complex formulations, often leading to non‐trivial problems in their numerical integration in finite elements codes. The paper describes a fully implicit stress‐point algorithm for the numerical integration of a single‐surface mixed isotropic–kinematic hardening plasticity model for structured clays. The formulation of the model stems from a compromise between its capability of reproducing the larger number of features characterizing the behaviour of structured clays and the possibility of developing a robust integration algorithm for its implementation in a finite elements code. The model is characterized by an ellipsoid‐shaped yield function, inside which a stress‐dependent reversible stiffness is accounted for by a non‐linear hyperelastic formulation. The isotropic part of the hardening law extends the standard Cam‐Clay one to include plastic strain‐driven softening due to bond degradation, while the kinematic hardening part controls the evolution of the position of the yield surface in the stress space. The proposed algorithm allows the consistent linearization of the constitutive equations guaranteeing the quadratic rate of asymptotic convergence in the global‐level Newton–Raphson iterative procedure. The accuracy and the convergence properties of the proposed algorithm are evaluated with reference to the numerical simulations of single element tests and the analysis of a typical geotechnical boundary value problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A comprehensive numerical model for the analysis of offshore foundations under a general transient loading is presented here. The theoretical basis of the model lies on the Swansea formulation of Biot’s equations of dynamic poroelasticity combined with a constitutive model that reproduces key aspects of cyclic soil behaviour in the frame of the theory of generalised plasticity. On the practical side, the adoption of appropriate finite element formulations may prevent the appearance of spurious numerical instabilities of the pore pressure field. In this respect, the use of a coupled enhanced-strain element is here proposed. On the other hand, the practicality of the presented model depends ultimately on its computational efficiency. Some practical recommendations concerning the solution strategies, the matrix storage/handling procedures and the parallel multi-processor computation are here provided. Finally, the performance of the model with a benchmark study case and its practical application to analyse the soil–structure interaction of an offshore monopile under a realistic transient storm loading are discussed.  相似文献   

20.
The paper considers a plane joint or interface element suitable for implementation into a standard non-linear finite element code. The element is intended to model discontinuities with rough contact surfaces, such as rock joints, where dilatant behaviour is present. Of particular concern is the formulation of a constitutive model which fully caters for all possible histories of opening, closing and sliding (accompained by dilation or contraction) in any direction. The non-linear incremental constitutive equations are formulated in a manner appropriate for a back-ward difference discretization in time along the path of loading. The advantage of such an approach is that no essential distinction need be drawn between opening, closing and sliding. Further, a convenient formulation of the constitutive equations is facilitated by representing the different contact conditions in relative displacement space. The state diagram in relative displacement space, however, changes from one time step to the next, and evolution equations for the updating must be formulated. These concepts are illustrated for two rock-joint models: a sawtooth asperity model and a limited dilation model. The models are based on a penalty formulation to enforce the contact constraints, and explicit equations for the tangent stiffness matrix and for the corrector step of the standard Newton–Raphson iterative algorithm are derived. These equations have been implemented as an user element into the finite element code ABAQUS7. Three examples are presented to illustrate the predictions of the formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号