首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The static design requirements of some seismic codes, such as the Eurocode 8 and—in most cases—the Uniform Building Code, to allow for the effects of earthquake excitation acting in a direction other than the principal axes of the structure do not apply to one-way asymmetric systems. Therefore, with some exceptions, no specific provisions are considered for such systems to cover effects of structural asymmetry on the behaviour of elements located along the symmetric system direction. Aimed towards fulfilling this need, in this paper, a wide parametric study of the inelastic response of one-way asymmetric systems designed according to Uniform Building Code is carried out, considering two-component earthquake excitations. The analyses show that the maximum ductility demands on elements aligned along the asymmetric system direction are very close to, and even lower than, those obtained for symmetric reference systems. Conversely, the symmetric direction elements undergo significantly larger inelasticity than if they were located in symmetric reference systems. Subsequently, the overstrength needed by the symmetric direction elements to prevent such additional ductility demands for several stiffness and plan configurations is quantified. It is concluded that one-way asymmetry should be considered by seismic codes as an intrinsic system property, thus implying that specific provisions should be included for designing elements located along the symmetric system direction, in addition to those currently subscribed to design the asymmetric direction elements. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This study aims to determine the influence of torsional coupling on the inelastic response of a series of models representing typical structural configurations in real buildings. The lake bed (SCT) east-west component of the 1985 Mexico City earthquake was employed in the analysis, and is representative of a severe ground motion known to have induced large inelastic structural deformations in a high proportion of those buildings having asymmetrical distributions of stiffness and/or strength. Material non-linearity in lateral load-resisting elements has been defined using a hysteretic Ramberg-Osgood model. Structural eccentricities have been introduced into the building models by (i) asymmetrical distributions of stiffness and/or strength, (ii) asymmetrical configuration of lateral load-resisting elements, or (iii) varying post-elastic material behaviour in the resisting elements. The dynamic inelastic response of these models has been obtained by a numerical integration of the relevant equations of motion, expressed in a non-dimensional incremental form.

In the elastic range, the results correlate well with those of previous studies. In the inelastic range, it is concluded that the peak ductility demand of the worst-affected element increases with the ground excitation level across the range of building periods considered, and that the influence of torsional coupling on the key response parameters is model dependent. Most significantly, the strength eccentricity relative to the centre of mass has been shown to influence the peak edge displacement response more than conventionally employed stiffness eccentricity.  相似文献   


3.
空间钢筋混凝土框架结构的非弹性地震反应   总被引:3,自引:0,他引:3  
对两个缩比为十五分之一的三层、双跨、两开间的钢筋混凝土框架模型进行了振动台试验,一个模型模拟质量中心与刚度中心不一致的偏心结构,另一个模型模拟承受双向地面运动的结构。研究了结构的空间非弹性地震反应。计算结果表明,理论分析与实测结果有较好的吻合性。  相似文献   

4.
This paper presents the results of an analytical work addressed to understand the effects of in-plane floor flexibility on torsionally unbalanced (TU) systems subjected to bidirectional firm-soil earthquake records. The study uses a structural system consisting of a linear-elastic diaphragm supported by non-linear frames oriented along two orthogonal directions. The diaphragm is modelled with plane-stress finite elements and frames with stiffness-degrading flexural elements. Results indicate that an increase of in-plane diaphragm flexibility leads to a reduction of frame displacements for systems with initial lateral period of vibration T>0·4 s. For systems with T⩽0·4 s, in-plane floor flexibility can lead to significant frame displacement increments (50 per cent higher). Results show that these variations on displacements decrease for increasing values of both the seismic-force reduction factor and the system initial lateral period. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

5.
近断层地震动脉冲特性在2个水平分量上具有差异,采用平方和开方法分析了近断层脉冲地震动双向地震作用下基础隔震结构和组合隔震结构的隔震层位移,并与近断层脉冲单向地震作用进行了对比分析,结果表明:若仅地震动加速度峰值大的分量或2个方向分量均存在明显速度脉冲,则产生的隔震层位移大于单向地震动;若仅地震动加速度峰值小的分量存在明...  相似文献   

6.
The inelastic earthquake response of eccentric, multistorey, frame‐type, reinforced concrete buildings is investigated using three‐ and five‐storey models, subjected to a set of 10, two‐component, semi‐artificial motions, generated to match the design spectrum. Buildings designed according to the EC8 as well as the UBC‐97 code were included in the investigation. It is found that contrary to what the simplified one‐storey, typical, shear‐beam models predict, the so‐called ‘flexible’ side frames exhibit higher ductility demands than the ‘stiff’ side frames. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. This investigation constitutes one of the first attempts to study the problem of inelastic torsion by means of realistic, multistorey inelastic building models. Additional studies with similar or even more refined idealizations will certainly be required to arrive at definite results and recommendations for possible code revisions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The inelastic response of one-storey, asymmetric-plan systems to two excitations is presented and analysed with the objective of identifying the influence of system parameters: uncoupled lateral vibration period, uncoupled torsional-to-lateral frequency ratio, stiffness eccentricity, relative values of the strength and stiffness eccentricities, and yield factor. Furthermore, the influence of yielding on the response of asymmetric-plan systems is examined. In particular, we determine whether the well known relationship between the response of yielding and elastic single-degree-of-freedom (SDF) systems is also applicable to asymmetric-plan systems.  相似文献   

8.
The effects of plan-wise distribution of stiffness and strength-as determined by the number, location, orientation and yield deformations of resisting elements-on the inelastic response of one-storey systems are evaluated. In particular, various systems are investigated for wide ranges of parameters involved, with the objective of establishing how the response is influenced by: (i) the presence of resisting elements perpendicular to the direction of ground motion; (ii) the number of resisting elements along the direction of ground motion; (iii) the overstrength typical of code-designed buildings; (iv) the relative values of strength and stiffness eccentricities; and (v) whether the asymmetry of the system is due to eccentricity in stiffness or in mass. The results presented for a simple excitation make it possible to explain the inconsistencies in conclusions from various earlier investigations, and to evaluate their applicability to actual buildings.  相似文献   

9.
The inelastic seismic torsional response of simple structures is examined by means of shear‐beam type models as well as with plastic hinge idealization of one‐story buildings. Using mean values of ductility factors, obtained for groups of ten earthquake motions, as the basic index of post‐elastic response, the following topics are examined with the shear‐beam type model: mass eccentric versus stiffness eccentric systems, effects of different types of motions and effects of double eccentricities. Subsequently, comparisons are made with results obtained using a more realistic, plastic hinge type model of single‐story reinforced concrete frame buildings designed according to a modern Code. The consequences of designing for different levels of accidental eccentricity are also examined for the aforementioned frame buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Coupling between lateral and torsional motions may lead to much larger edge deformations in asymmetric-plan systems compared to systems with a symmetric plan. Supplemental viscous damping has been found to be effective in reducing deformations in the symmetric-plan system. This investigation examined how supplemental damping affects the edge deformations in asymmetric-plan systems. First, the parameters that characterize supplemental viscous damping and its plan-wise distribution were identified, and then the effects of these parameters on edge deformations were investigated. It was found that supplemental damping reduces edge deformations and that reductions by a factor of up three are feasible with proper selection of system parameters. Furthermore, viscous damping may be used to reduce edge deformations in asymmetric-plan systems to levels equal to or smaller than those in the corresponding symmetric-plan system. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
A study is made of the effect of soil-structure interaction on the coupled lateral and torsional responses of asymmetric buildings subjected to a series of historical free-field earthquake base motions. It sh shown that for particular classes of actual buildings the equivalent rigid-base responses are significantly increased for structures founded on medium-stiff soils, and hence the assumption of the major building codes that a conservative estimate of response is obtained by considering the structure to be fixed rigidly at its base is shown to be inconsistent with the presented dynamic results. It is shown that foundation interaction produces greatest amplification of torsional coupling effects for structures subjected to a particular class of European strong-motion earthquake records, identified by similarities in their spectral shape, for which the vibrational energy of the ground motion is distributed approximately uniformly over the range of frequencies which are of interest for real structures. It is recommended that provision be made in the torsional design procedures of building codes for the increase in the coupled torsional response due to soil-structure interaction as indicated in this study. Such provision should be based on the results of comprehensive parametric studies employing a wide selection of earthquake records and accounting for expected variations in localized soil conditions.  相似文献   

12.
This paper studies the effect of coherency loss and wave passage on the seismic torsional response of three‐dimensional, multi‐storey, multi‐span, symmetric, linear elastic buildings. A model calibrated against statistical analyses of ground motion records in Mexico City is used for the coherency function. The structural response is assessed in terms of shear forces in structural elements. Incoherence and wave passage effects are found to be significant only for columns in the ground level of stiff systems. The increase of column shears in the ground level is much higher for soft than for firm soil conditions. For the torsionally stiff systems considered, it is found that incoherent and phase‐delayed ground motions do not induce a significant rotational response of the structure. The use of a code eccentricity to account for torsion due to ground motion spatial variation is assessed. On firm soil, the use of a base shear along with an accidental eccentricity results in highly overestimated shear forces; however, for soft soil conditions, code formulations may result in underestimated shear forces. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
平面不规则结构非弹性扭转地震反应研究进展   总被引:1,自引:0,他引:1  
不规则建筑结构在侧向地震荷载作用下由于质量中心和刚度中心的不重合导致平扭耦联反应的发生,使得结构构件的变形需求分布在结构平面内并不一致,从而产生附加的强度和变形需求。尽管不规则建筑结构在地震作用下的扭转问题一直受到研究学者的关注和研究,并取得了很多显著的成果,但仍然存在着一些争议,有待于继续深入研究。本文从结构的分析模型、影响参数及地震动输入等方面回顾总结了平面不规则建筑结构在地震作用下非弹性扭转的研究进展,结合当前的研究工作指出今后研究的发展方向。  相似文献   

14.
Period lengthening, exhibited by structures when subjected to strong ground motions, constitutes an implicit proxy of structural inelasticity and associated damage. However, the reliable prediction of the inelastic period is tedious and a multi‐parametric task, which is related to both epistemic and aleatory uncertainty. Along these lines, the objective of this paper is to investigate and quantify the elongated fundamental period of reinforced concrete structures using inelastic response spectra defined on the basis of the period shift ratio (Tin/Tel). Nonlinear oscillators of varying yield strength (expressed by the force reduction factor, Ry), post‐yield stiffness (ay) and hysteretic laws are examined for a large number of strong motions. Constant‐strength, inelastic spectra in terms of Tin/Tel are calculated to assess the extent of period elongation for various levels of structural inelasticity. Moreover, the influence that structural characteristics (Ry, ay and degrading level) and strong‐motion parameters (epicentral distance, frequency content and duration) exert on period lengthening are studied. Determined by regression analyses of the data obtained, simplified equations are proposed for period lengthening as a function of Ry and Tel. These equations may be used in the framework of the earthquake record selection and scaling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
地下地震动频谱特点研究   总被引:6,自引:0,他引:6  
本以美国加州强震观测计划(CSMIP)的6个岩土工程台阵的429条地表和地下地震动程为数据基础,按照各台阵场地土层分布情况将台阵分为七层和“上层/基岩”两类。对于同一类场地,将其中的各次地震,按照震级的大小将其分为三类;对于同一类地震,首先计算各地震的水下分量5%阻尼的反应谱以及相应的标准反应谱,并得到各深度测点相对于最深处测点的反应谱比值,分析比较两类场地下各深度反应谱的特点,另外,傅里叶谱也是本分析的一部分,通过对不同深度地下地震动的反应谱和傅氏谱的比较,得到了一些较有意义的结论,以供工程参考。  相似文献   

16.
地震动强度对场地地震反应的影响   总被引:3,自引:2,他引:3  
通过对场地地震反应的研究发现,地震动强度不同,同样的场地对地震动的影响也不同,得到的反应谱形状也不同。目前我国抗震设计规范中不同烈度下的设计反应谱形状完全一致,没有考虑地震动强弱对相同场地反应谱形状的影响。  相似文献   

17.
A stiffening system is a system that increases its stiffness as it goes under large displacements. Such behavioural characteristic can result from constitutive behaviour or at the structural level often from closure of gaps between various components (sub‐systems) of the structure. An example of the latter situation is multi‐span simply supported (MSSS) bridges under horizontal earthquake ground motion. Unlike softening systems, stiffening systems have not been studied. In addition to the need for more understanding of the seismic response of stiffening systems, there is a need to develop response spectrum that can be used in design. Several parameters including gap size and ratios of sub‐systems stiffness, strength, and mass control the behaviour of a stiffening system. In this study, a simplified stiffening model is developed and over 367 000 cases are analysed to investigate the nonlinear stiffening behaviour and pounding. Parameters considered also include ground motion characteristic. Results are evaluated and compared in terms of displacement and dissipated hysteretic energy. Parameter study results show that, on average, the displacement response is lower for stiffening systems, however, they dissipates higher hysteretic energy, due to higher yield cycles and yield excursions, and can possibly sustain more damage than a bilinear, elastic–plastic system. Using parameter study database, design response spectrum for stiffening systems is also proposed and its practical application is demonstrated through its application to an MSSS bridge. Results of this study goes beyond MSSS bridges and will have application for many structural systems where response is characterized by a stiffening behaviour. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the effects of supplemental viscous damping on the seismic response of one‐storey, asymmetric‐plan systems responding in the inelastic range of behaviour. It was found that addition of the supplemental damping reduces not only deformation demand but also ductility and hysteretic energy dissipation demands on lateral load resisting elements during earthquake loading. However, the level of reduction strongly depends on the plan‐wise distribution of supplemental damping. Nearly optimal reduction in demands on the outermost flexible‐side element, an element generally considered to be the most critical element, was realized when damping was distributed unevenly in the system plan such that the damping eccentricity was equal in magnitude but opposite in algebraic sign to the structural eccentricity of the system. These results are similar to those noted previously for linear elastic systems, indicating that supplemental damping is also effective for systems expected to respond in the inelastic range. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the estimation of peak inelastic displacements of SDOF systems, representative of typical steel structures, under constant relative strength scenarios. Mean inelastic deformation demands on bilinear systems (simulating moment resisting frames) are considered as the basis for comparative purposes. Additional SDOF models representing partially‐restrained and concentrically‐braced (CB) frames are introduced and employed to assess the influence of different force‐displacement relationships on peak inelastic displacement ratios. The studies presented in this paper illustrate that the ratio between the overall yield strength and the strength during pinching intervals is the main factor governing the inelastic deformations of partially‐restrained models and leading to significant differences when compared with predictions based on bilinear structures, especially in the short‐period range. It is also shown that the response of CB systems can differ significantly from other pinching models when subjected to low or moderate levels of seismic demand, highlighting the necessity of employing dedicated models for studying the response of CB structures. Particular attention is also given to the influence of a number of scalar parameters that characterise the frequency content of the ground motion on the estimated peak displacement ratios. The relative merits of using the average spectral period Taver, mean period Tm, predominant period Tg, characteristic period Tc and smoothed spectral predominant period To of the earthquake ground motion, are assessed. This paper demonstrates that the predominant period, defined as the period at which the input energy is maximum throughout the period range, is the most suitable frequency content scalar parameter for reducing the variability in displacement estimations. Finally, noniterative equivalent linearisation expressions based on the secant period and equivalent damping ratios are presented and verified for the prediction of peak deformation demands in steel structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号