首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Semicircular and crescent-shaped accumulations of salt crystals developed on salt crusts were measured on three Tunisian playas in September 1990. These features have been termed salt ramps. Their morphology and chemistry suggest that they are formed in the late stages of shallow ephemeral lake desiccation in playa basins. They form by salt precipitation from shallow brine lakes that are blown across salt-encrusted playa surfaces by the wind. Moreover, they appear to be short-lived features and their degradation is related to the flooding of playas with less saline water, and possibly rainfall and deflation.  相似文献   

2.
Daily river inflow time series are highly valuable for water resources and water environment management of large lakes. However, the availability of continuous inflow data for large lakes is still relatively limited, especially for large lakes situated within humid plain regions with tens or even hundreds of tributaries. In this study, we choose the fifth largest freshwater Lake Chaohu in China as our study area to introduce a new approach to reconstruct historical daily inflows at ungauged subcatchments of large lakes. This approach makes use of water level, lake surface rainfall, evaporation from the lake, and catchment rainfall observations. Rainfall–runoff relationship at a reference catchment was analysed to select rainfall input and estimate run‐off coefficient firstly, and the run‐off coefficient was then transferred to ungauged subcatchments to initially estimate daily inflows. Run‐off coefficient was scaled to adjust daily inflows at ungauged subcatchments according to water balance of the lake. This approach was evaluated using sparsely measured inflows at eight subcatchments of Lake Chaohu and compared with the commonly used drainage area ratio method. Results suggest that the inflow time series reconstructed from this approach consistent well to corresponding observations, with mean R2 and Nash–Sutcliffe efficiency values of 0.69 and 0.6, respectively. This approach outperforms drainage area ratio method in terms of mean R2 and Nash–Sutcliffe efficiency values. Accuracy of this approach holds well when the number of water‐level station being used decreased from four to one.  相似文献   

3.
Dust emission from wet and dry playas in the Mojave Desert,USA   总被引:1,自引:0,他引:1  
The interactions between playa hydrology and playa‐surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near‐surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa – surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water‐table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt‐rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

4.
In bolsons in the desert regions of southern California and adjacent parts of Nevada, the area underlain by alluvial fan gravels and playa sediments is generally ?1·2 times the area being eroded to produce those sediments. In certain larger basins in the vicinity of Death Valley, however, the depositional area is only about half the size of the erosional area. This reflects the more active tectonic environment in these bolsons. Of the areas underlain by recent sediments in these bolsons, playas make up 2–6 per cent. Smaller playas are found in the Mojave region, and seem to be associated with sedimentary terranes. Conversely, igneous terranes support larger playas. Larger deviations of playa area from these averages are attributable to incorrect identification of bolson boundaries. Fine sediment is either able to pass through the bolson to the next down stream, or is being collected from areas upstream that were not considered to be part of the system. For example, the playa in Death Valley is unusually large. This is in part because the Death Valley playa has been deformed tectonically so parts of it are now eroding, and in part because the outlet of Lake Tecopa was downcut in the geologically recent past, so sediment once trapped there now reaches Death Valley. The size of the playa in Death Valley is still adjusting to these changes.  相似文献   

5.
This paper sheds light on the hydrodynamic conditions of transport and sedimentary effects of wind‐induced water currents produced during strong windstorms in low gradient systems. Repeated field surveys were conducted in a playa lake in central Spain to determine the impacts of major winter storms on the bed form morphology in real time. The succession of storms that passed through the area from mid‐December 2013 to early February 2014 left behind a variety of sedimentary structures: mainly ripple marks showing complex patterns and erosional structures. The latter include obstacle scours, grooves and other tool marks. In situ observations revealed that strong storm events in almost flat, extremely shallow lakes (less than 5 cm) have enough hydraulic energy to erode and remove high volumes of sediments and may also lead to large stones sliding across the bed, thus creating long grooves. Sole marks found in ancient continental successions have been typically attributed to fluvial conditions. We suggest that shallow lake basins should not be discounted when storm‐generated structures are preserved in ancient rocks. The identification of such sedimentary structures provides valuable information for reconstructing hydrodynamic conditions and paleoclimatic conditions in semi‐arid environments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This study investigated a series of dammed lakes and downstream-adjacent alluvial fans in the upstream to middle reaches of the Golmud River in the eastern Kunlun Mountain, on the north-eastern Qinghai-Tibetan Plateau (QTP). An optically stimulated luminescence (OSL) chronology shows the sediments of five dammed lakes developed from c. 45–40, 30–25, 18–14, and 12–8 ka, corresponding to MIS 3b, late MIS 3a, Last Deglaciation, and early Holocene, respectively. The remote sensing data show these dammed lakes have a total area of 109.4 km2, with the lake volume of more than 4.0 km3. Symmetric alluvial fans from north–south tributary valleys produced OSL ages of c. 61–52, 42–31, 26–20, and 16–10 ka, corresponding to glaciation periods: the MIS 3c and MIS 3a, MIS 2, and the Last Deglaciation. This suggests that glacial activity is responsible for the alluvial fan development, where dammed rivers occurred first, but lake formation did not take place synchronously until later periods of strong hydrologic activity, resulting from northward intrusions of the Indian summer monsoon (ISM) or glacier melt. Thus, the blocking pattern is that river valleys were dammed during periods of glacial activity and lakes formed during wet periods. The lake formation and subsequent drainage may have resulted in: (i) impeded headwater incision and strengthening of downstream dissection; (ii) enriched the halite and potash in the distal Qarhan Salt Lake through hydrologic and hydrochemical processes of abundant water input, the salt lake expansion, salt redissolution from playa and final resedimentation during later dry periods. The alluvial-dammed lake pattern in the mountain-basin systems of eastern Kunlun Mountain offers a model for assessing the linkages between monsoon dynamics, geomorphic processes and distal salt lake evolutions in other arid regions.  相似文献   

7.
The arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this paper is to illustrate the effects of spatial organization of lake chains and associated storage thresholds upon lake-overflow behaviour, and specifically their impact upon large scale flow connectivity and the flood frequency of lake overflows. The analysis was carried out with the use of a multiple bucket model of the lake chain system, consisting of a network of both lakes and associated catchment areas, which explicitly incorporated within it three storage thresholds: a catchment field capacity threshold that governs catchment subsurface stormflow, a total storage capacity threshold that governs catchment surface runoff, and a lake storage capacity threshold that determines lake overflow. The model is driven by rainfall inputs generated by a stochastic rainfall model that is able to capture rainfall variability at a wide range of time scales. The study is used to gain insights into the process controls of lake-overflow generation, and in particular, to explore the crucial role of factors relating to lake organization, such as the average catchment area to lake area (AC/AL) ratio and the distribution of AC/AL with distance in the downstream direction (increasing or decreasing). The study showed that the average AC/AL value was the most important factor determining the frequency of occurrence and magnitude of floods from a landscape consisting of lake chains. The larger the average AC/AL value the more runoff is generated from catchments thus increasing both the occurrence and magnitude of lake overflows. In this case the flood frequency curve reflects that of the catchment area, and lake organization does not play an important role. When AC/AL is small the landscape is lake dominated, the spatial organization of lakes has a significant impact on lake connectivity, and consequently on flood frequency. One of the aspects of lake organization that may have a significant influence on lake connectivity is the spatial distribution of AC/AL from upstream to downstream (increasing or decreasing). In a landscape in which AC/AL increases downstream, lake overflow will occur more frequently relative to a similar landscape (i.e. identical AC/AL) with a constant value of AC/AL. When AC/AL decreases downstream, however, runoff inputs from the upstream parts will trigger lake overflow in the downstream parts, and consequently, full connectivity may be achieved leading to increased flood frequencies.  相似文献   

9.
Glacier retreat results in the formation and expansion, and sometimes outburst, of moraine‐dammed lakes worldwide. Sudden outburst floods from such lakes have caused enormous damage to settlements and infrastructure located downstream. Such lakes located in the Himalayan region are highly prone to outburst floods due to climatic conditions and geotectonic settings. In this study, multi‐temporal Landsat images from 2002–2014, digital elevation models (DEMs), geomorphic analysis and modelling were used to assess the changes in glacial lakes and the outburst susceptibility of moraine‐dammed lakes in the Chandra–Bhaga basin of the north‐western Indian Himalaya. An inventory of lakes was developed using satellite data, thematic maps and ground‐based investigations for the Chandra–Bhaga basin. The total area of all glacial lakes (size >5000 m2) increased by 47% from 2002 to 2014, with a pronounced increase of 57% for moraine‐dammed lakes. Sixteen moraine‐dammed lakes were identified and assessed for outburst susceptibility using the analytic hierarchy process (AHP). Forty‐one reported glacial lake outburst flood (GLOF) events from moraine‐dammed lakes in Himalayan regions were analysed, culminating in the identification of 11 critical factors for assessing outburst susceptibility using the AHP, including those related to the lake area and change, surrounding terrain characteristics, dam geometry, regional seismicity and rainfall history. The past three GLOF events in the Himalayan region were used to validate the method and to classify moraine‐dammed lakes as having very high, high, medium or low outburst susceptibility. Eight lakes classified as very high and high outburst susceptibility should be further investigated in detail. The proposed AHP‐based approach is suitable for first‐order identification of critical lakes for prioritising future detailed investigation and monitoring of moraine‐dammed glacial lakes in the Himalayan region. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
To better understand the linkage between lake area change, permafrost conditions and intra‐annual and inter‐annual variability in climate, we explored the temporal and spatial patterns of lake area changes for a 422 382‐ha study area within Yukon Flats, Alaska using Landsat images of 17 dates between 1984 and 2009. Only closed basin lakes were used in this study. Among the 3529 lakes greater than 1 ha, closed basin lakes accounted for 65% by number and 50% by area. A multiple linear regression model was built to quantify the temporal change in total lake area with consideration of its intra‐annual and inter‐annual variability. The results showed that 80.7% of lake area variability was attributed to intra‐annual and inter‐annual variability in local water balance and mean temperature since snowmelt (interpreted as a proxy for seasonal thaw depth). Another 14.3% was associated with long‐term change. Among 2280 lakes, 350 lakes shrank, and 103 lakes expanded. The lakes with similar change trends formed distinct clusters, so did the lakes with similar short term intra‐annual and inter‐annual variability. By analysing potential factors driving lake area changes including evaporation, precipitation, indicators for regional permafrost change, and flooding, we found that ice‐jam flooding events were the most likely explanation for the observed temporal pattern. In addition to changes in the frequency of ice jam flooding events, the observed changes of individual lakes may be influenced by local variability in permafrost distributions and/or degradation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
江湖联通状况对湖泊生态系统有着重要影响,但是由于缺乏长期的生态水文监测数据,湖泊系统对其响应的过程与机理仍缺乏认识.本研究选择长江中下游地区典型湖泊——涨渡湖,结合该湖一沉积短柱的210Pb、137Cs年代测试,通过高分辨率的多指标分析(硅藻、元素地球化学和粒度),揭示近200年来湖泊生态系统对该湖与长江之间联通关系改变的响应过程.与历史文献记载一致,古湖沼学记录揭示出该湖与长江的联通状况经历了3个阶段.1)江湖联通期(1954年以前):该湖与长江自然相通,江湖水体交换频繁,丰富的贫营养浮游种Cyclotella bodanica表明该湖长期处于低营养及湖泊水位相对较高的状态.2)江湖隔绝期(1954 2005年):随着湖坝的兴建,江湖联通关系被隔绝,湖泊换水周期变长,透明度降低,喜好扰动环境的Aulacoseria granulata大量生长.相应地,富营养硅藻的增加、高TOC含量以及较高的沉积物TP、TN浓度表明,该湖营养水平逐渐升高.特别是近20年来,较高含量的富营养硅藻种——C.meneghinena、A.alpigena、Nitzschia palea、Surirella minuta和地球化学记录,包括TOC含量和沉积物TP、TN浓度,表明该湖富营养化程度加剧.3)江湖季节性联通期(2005年后):硅藻以附生种、底栖种为主,但仍有一定含量的富营养化属种,且TOC含量以及沉积物TP、TN浓度仍然保持较高水平,表明富营养程度有所缓解.古湖沼学和历史记录都揭示了自该湖与长江无连通后其生态状况的快速退化、重新联通后生态状况有所好转.因此,在长江中下游洪泛平原区,江湖关系的重新联通将是减轻湖泊生态压力的有效手段.  相似文献   

12.
长江中下游沿江城郊闸控湖泊普遍面临总磷浓度偏高的现象,解析其总磷时空变化特征及影响驱动机制成为精准治理与修复此类湖泊前亟待解决的关键性问题。本文基于安庆市沿江城郊中小型闸控湖泊--石塘湖实测气象降雨、水文、河湖水质等数据,采用多因子相关性分析、变异系数法和主成分分析的方法,研究各指标因子与湖泊总磷浓度时空变化的响应关系。结果表明:(1)湖泊水质呈现丰(5-8月)、平(3-4月和9-10月)、枯(11-次年2月)水期聚类效果显著,但湖泊空间差异不明显;湖泊水质的季节性变化受总磷浓度变化控制,其他理化指标影响较弱。(2)高强度降雨和汛期闸站调度下的水动力变化决定污染物迁移速率,是导致湖泊总磷浓度在丰水期更容易受入湖河流输入影响而达到峰值的主要驱动因子。(3)高强度人类活动导致入湖河流季节性输入是石塘湖总磷上升的决定性因素,从单位土地利用类型产生单位总磷负荷来看,农业用地远大于城镇建设用地,林地和草地充当污染物进入湖泊的预前“汇”。因此,从治理策略和途径来看,可在控制外源输入的同时,适当调节闸站以减弱丰水期水动力强度,减少入湖河流总磷输入影响的同时,发挥湖泊营养盐的滞留净化能力。本文主要从人类活动导致的外源污染及闸站抽排调度角度分析沿江城郊闸控湖泊石塘湖总磷变化、影响因素及驱动机制,可以为此类城郊中小型沿江闸控型湖泊污染治理提供理论参考。  相似文献   

13.
The formation of Namibia's extensive pedogenic gypsum crusts (CaSO4·2H2O) is interpreted in a new light. It is suggested that gypsum primarily precipitates at isolated points of evaporitic concentration, such as inland playas, and that deflation of evaporitic‐rich gypsum dust from these playas contributes to the formation of pedogenic gypsum duricrusts on the coastal gravel plains of the Namib Desert surrounding these playas. This study establishes the nature, extent and distribution of playas in the Central Namib Desert and provides evidence for playa gypsum deflation and gravel plain deposition. Remote sensing shows the distribution of playas, captures ongoing deflation and provides evidence of gypsum deflation. It is proposed that, following primary marine aerosol deposition, both inland playas and coastal sabkhas generate gypsum which through the process of playa deflation and gravel plain redeposition contributes to the extensive pedogenic crusts found in the Namib Desert region. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A large groundwater system in the Amadeus Basin, central Australia, discharges to a chain of playa lakes 500 km long. The playas contain highly concentrated brines; these are sodium-chloride rich waters with appreciable magnesium and sulphate and very low concentrations of calcium and bicarbonate. Gypsum, glauberite, and other evaporite minerals are precipitating in the playas. The groundwaters evolve to brine by concurrent processes of dissolution, evaporative concentration, mineral precipitation, and mineralogical change. Chemical evolution is considered with reference to a concentration factor based on chloride. Ion transfer calculations demonstrate losses of magnesium and bicarbonate throughout, as a result of precipitation. Sodium, potassium, calcium, and sulphate are gained initially as a result of dissolution but lost subsequently as a result of precipitation. Larger playas in the chain, exemplified by Lake Amadeus, have dual shallow and deep groundwater flow paths whereas the smaller playas, exemplified by Spring Lake, have only shallow flow paths. Brines in the larger playas are diluted by deep groundwaters and this is reflected in the degree of saturation attained with respect to particular minerals. Thus, saturation with respect to gypsum and glauberite is attained earlier in Spring Lake than in Lake Amadeus. Saturation with respect to halite is attained in Spring Lake but not in Lake Amadeus. Both playas are undersaturated with respect to hexahydrite and sylvite although these minerals occur in efflorescent crusts in Spring Lake.  相似文献   

15.
郑喜玉 《湖泊科学》1994,6(3):267-275
本文首先介绍了青藏高原盐湖的基本概况,分布特征;重点叙述了该区盐湖自然资源的类型、盐类沉积矿物组合,卤水的水化学成分,盐湖资源的规模和开发利用现状;提出了今后开发利用盐湖资源的方向和途径。  相似文献   

16.
段水强 《湖泊科学》2018,30(1):256-265
柴达木盆地众多的湖泊不仅对维持当地脆弱的生态环境具有极其重要的作用,而且中心盐湖也是重要的矿产资源.进入21世纪以来,受气候变化和人类活动的共同影响,盆地湖泊发生了一系列重大变化.为科学认识这一问题,选取了1976-2015年6期Landsat系列卫星影像,解译了该区域1 km2以上的湖泊水面,并分析了湖泊变化对气候和人类活动的响应.结果表明:柴达木盆地湖泊面积总体上存在扩张(1976-1990年)萎缩(1990-2000年)扩张(2000-2010年)萎缩(2010-2015年)4个阶段的变化过程,2010年湖泊面积最大,2015年湖泊又明显萎缩.就气候水文因素而言,湖泊面积变化主要受山区降水径流的影响.湖面变化与前3 a的降水径流关系最为密切.进入21世纪以来,气候变化与上游社会经济耗水、盐湖周边人为阻隔河湖连通、开采卤水、修建人工盐田、排放老卤等人类活动,对盆地中心湖泊的空间格局、面积都产生了显著影响,苦水沟、达布逊湖南部形成了新湖泊,鸦湖、团结湖面积显著扩大,东、西台吉乃尔湖逐渐萎缩、干涸,一里平湖由以前的干盐湖在2010年一跃成为盆地最大的湖泊.针对盐湖大规模开发产生的负面影响,提出了合理开发盐湖资源的建议.  相似文献   

17.
We present the first quantitative reconstruction of palaeofloods using lake sediments for the UK and show that for a large catchment in NW England the cluster of devastating floods from 1990 to present is without precedent in this 558-year palaeo-record. Our approach augments conventional flood magnitude and frequency (FMF) analyses with continuous lake sedimentary data to provide a longer-term perspective on flood magnitude recurrence probabilities. The 2009 flood, the largest in >558 years, had a recurrence interval larger (1:2,200 year) than revealed by conventional flood estimation using shorter duration gauged single station records (1:1,700 year). Flood-rich periods are non-stationary in their correlation with climate indices, but the 1990-2018 cluster is associated with warmer Northern Hemisphere Temperatures and positive Atlantic Multidecadal Oscillation. Monitored records rarely capture the largest floods and our palaeoflood series shows, for this catchment, such omissions undermine evaluations of future risk. Our approach provides an exemplar of how to derive centennial palaeoflood reconstructions from lakes coupled well with their catchments around the world. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

18.
长江中下游典型湖泊营养盐历史变化模拟   总被引:2,自引:1,他引:1  
郭娅  于革 《湖泊科学》2016,28(4):875-886
湖泊营养盐变化在自然条件下受到气候水文因素控制,同时受到湖泊生态系统生物群落作用和反馈.作为动力机制探讨,本文试图基于水文和生态动力学方法,分别构建气候-流域水文作用于湖泊营养盐的外源模式和湖泊生物群落作用于湖泊营养盐的內源模式.针对长江中下游典型湖泊,经过控制实验和率定,发现营养盐模拟与观测数据在时间序列上达到90%百分位的正相关,因此用来模拟1640 1840 A.D.期间的营养盐演变历史.研究表明:(1)模拟的湖泊营养盐变化与沉积钻孔揭示的历史营养盐变化基本一致,沉积记录与模式模拟的7个湖泊的营养盐变化均显著相关;(2)气候因素是湖泊营养盐历史演变的主控因子,来自于湖泊生物群落的反馈作用贡献约占40%;(3)在温度和降水因子的驱动下,湖泊营养盐历史变化主要受降水控制,在极端干旱时期,60%的营养盐变化同步响应于降水变化.同时,面积在400 km2以下的湖泊营养盐对气候变化的响应比2000 km2以上的大湖更为敏感.研究结果对长江中下游湖泊营养状态的长期变化机理认识和趋势控制提供科学依据.  相似文献   

19.
Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short‐term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa‐crust surface pore‐water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10?3 m; hours) co‐located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra‐red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non‐elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts however showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasize how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

20.
Supra‐glacial lakes and ponds can create hotspots of mass loss on debris‐covered glaciers. While much research has been directed at understanding lateral lake expansion, little is known about the rates or processes governing lake deepening. To a large degree, this knowledge gap persists due to sparse observations of lake beds. Here we report on the novel use of ground penetrating radar (GPR) surveys to simultaneously collect supra‐glacial lake bathymetry and bottom composition data from Spillway Lake (surface area of 2.4 × 105 m2; volume of 9.5 × 104 m3), which is located in the terminus region of the Ngozumpa Glacier in the Khumbu region of the Nepal Himalaya. We identified two GPR bottom signals corresponding to two sedimentary facies of (1) sub‐horizontal layered fine sediment drape and (2) coarse blocky diamict. We provide an understanding of the changes in subaqueous debris distribution that occur through stages of lake expansion by combining the GPR results with in situ observations of shoreline deposits matching the interpreted facies. From this, we present an updated conceptual model of supra‐glacial lake evolution, with the addition of data on the evolving debris environment, showing how dominant depositional processes can change as lakes evolve from perched lakes to multi‐basin base‐level lakes and finally onto large moraine‐dammed lakes. Throughout lake evolution, processes such as shoreline steepening, lakebed collapse into voids and conduit interception, subaerial and subaqueous calving and rapid areal expansion alter the spatial distribution and makeup of lakebed debris and sediments forcing a number of positive and negative feedbacks on lake expansion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号