首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e. the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km² Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km²) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Catchment‐wide erosion rates were defined using 10Be terrestrial cosmogenic nuclides for the Eastern Cordillera of the Colombian Andes to help determine the nature of drainage development and landscape evolution. The Eastern Cordillera, characterized by a smooth axial plateau bordered by steep flanks, has a mean erosion rate of 11 ± 1 mm/ka across the plateau and 70 ± 10 mm/ka on its flanks, with local high rates >400 mm/ka. The erosional contrast between the plateau and its flanks was produced by the increase in the orogen regional slope, derived from the progressive shortening and thickening of the Eastern Cordillera. The erosion rates together with digital topographic analysis show that the drainage network is dynamic and confirms the view that drainage divides in the Eastern Cordillera are migrating towards the interior of the mountain belt resulting in progressive drainage reorganization from longitudinal to transverse‐dominated rivers and areal reduction of the Sabana de Bogotá plateau. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Interrill erosion processes on gentle slopes are affected by mechanisms of raindrop impact, overland flow and their interaction. However, limited experimental work has been conducted to understand how important each of the mechanisms are and how they interact, in particular for peat soil. Laboratory simulation experiments were conducted on peat blocks under two slopes (2.5° and 7.5°) and three treatments: Rainfall, where rainfall with an intensity of 12 mm h?1 was simulated; Inflow, where upslope overland flow at a rate of 12 mm h?1 was applied; and Rainfall + Inflow which combined both Rainfall and Inflow. Overland flow, sediment loss and overland flow velocity data were collected and splash cups were used to measure the mass of sediment detached by raindrops. Raindrop impact was found to reduce overland flow by 10 to 13%, due to increased infiltration, and reduce erosion by 47% on average for both slope gradients. Raindrop impact also reduced flow velocity (80–92%) and increased roughness (72–78%). The interaction between rainfall and flow was found to significantly reduce sediment concentrations (73–85%). Slope gradient had only a minor effect on overland flow and sediment yield. Significantly higher flow velocities and sediment yields were observed under the Rainfall + Inflow treatment compared to the Rainfall treatment. On average, upslope inflow was found to increase erosion by 36%. These results indicate that overland flow and erosion processes on peat hillslopes are affected by upslope inflow. There was no significant relationship between interrill erosion and overland flow, whereas stream power had a strong relationship with erosion. These findings help improve our understanding of the importance of interrill erosion processes on peat. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Gravity and bathymetric results from the 1983 Canadian Expedition to Study the Alpha Ridge (CESAR) have outlined positive free-air anomalies centred on the continental break off Ellesmere Island characteristic of normal Atlantic-type passive margins. These data confirm implications derived from depth-to-magnetic basement calculations that the ridge may not be structurally connected to the continent. Across the Alpha Ridge magnetic and gravity anomalies mimic the bathymetry. The magnetic anomalies apparently are not caused, to any great extent, by internal structures or magnetic reversals, but rather seem to result simply from variations in depths to a homogenous magnetic structure. The gravity anomalies across a 500 km wide section of the Alpha Ridge can be almost completely accounted for by topography, shallow sedimentary fill and a simple two-tier crustal model. This implies an extraordinary lateral density homogeneity unknown in continental structures of comparable size. Gravity models show the crustal thickness to increase gradually from 20 km at the Marvin Spur to 38 km at the ridge crest. A comparison of this model with a gravity model of the continental-type Lomonosov Ridge, which has a thickness of about 25 km, indicates that, at the same thickness of 25 km, the average crustal density of the Alpha Ridge is 0.08 Mg/m3 greater. These gravity constraints, the unusually homogenous seismic velocity structure revealed by the CESAR studies, the homogeneous magnetic structure, and the extraordinary high intensity satellite magnetic anomaly associated with the Alpha Ridge, indicate that the ridge may be composed of a large pile of mafic rock, possibly unique on this planet.  相似文献   

5.
This study aimed to investigate the changing characteristics of microrelief of purple soil and its erosional response during successive stages of water erosion, including splash erosion, sheet erosion, and rill erosion. Methods employed included a rainfall simulator and the use of a laser scanner to generate a digital elevation model. Three artificial tillage practices, including conventional tillage (CT), artificial digging (AD), and ridge tillage (RT), were used to simulate different microrelief patterns. Eighteen artificial rainfall experiments were conducted using three 2 × 1 m boxes with a rainfall intensity of 1.5 mm min?1 on a 15° slope. The results showed that the soil roughness (SR) index values for the tillage slopes were RT > AD > CT. The combined effects of detachment by raindrop impact and transport by run‐off decreased the SR index, whereas rill erosion increased the SR index during rainfall event. Microtopography and drainage networks have strong multifractal behaviours. The multifractal parameters of microtopography reflect the overall characteristics as well as the characteristics of the local soil surface. Within a certain range of threshold values, higher microrelief causes less soil erosion. However, when the parameters of spatial heterogeneity of microtopography exceed the threshold values, a higher degree of microrelief can increase soil erosion. These results help clarify the effect of microtopography on soil erosion and provide a theoretical foundation to guide future tillage practices on sloping farmland of purple soil.  相似文献   

6.
A drainage basin simulation model is used to interpret the morphometry and historical evolution of Mancos Shale badlands in Utah. High relief slopes in these badlands feature narrow divides and linear profiles due to threshold mass-wasting. Threshold slopes become longer in proportion to erosion rate, implying lower drainage density and higher relief. By contrast, in slowly eroding areas of low relief, both model results and observations indicate that drainage density increases with relief, suggesting control by critical shear stress. Field relationships and simulation modelling indicate that the badlands have resulted from rapid downcutting of the master drainage below an Early Wisconsin terrace to the present river level, followed by base level stability. As a result, Early Wisconsin alluvial surfaces on the shale have been dissected up to 62 m into steep badlands, and a Holocene alluvial surface is gradually replacing the badland slopes which are erocing by parallel retreat. © 1997 by John Wiley & Sons, Ltd.  相似文献   

7.
Nonpoint source pollution and hydromodification are the leading causes of impairment to our nation's rivers and streams. Roadside ditch networks, ubiquitous in both rural and urban landscapes, intercept and shunt substantial quantities of overland runoff and shallow groundwater to stream systems. By altering natural flowpaths, road ditches contribute not only to hydromodification but also potentially to nonpoint‐source (NPS) pollution by acting as hydrological links between agricultural fields and natural streams. Unfortunately, the impacts of these alterations on watershed hydrology and water quality are not well understood. Through a series of field measurements, including field surveys and discharge monitoring, this study examined the effect of road ditch networks on basin morphometry, field‐ and watershed‐scale hydrology, and pollutant transport in a 38 km2 agricultural watershed in south‐central NY. Salient findings include the following: (i) 94% of road ditches discharged to natural streams, effectively doubling the drainage density; (ii) on average, road ditches increased peak and total event flows in their receiving streams by 78% and 57%, respectively, but displayed significant variation across ditches; and (iii) ditches intercepted large quantities of surface and subsurface runoff from agricultural fields and therefore represent efficient conduits for the transport of agricultural NPS pollutants to sensitive receiving waterbodies. Our results provide useful information for hydrologists who wish to further understand how artificial drainage may be affecting watershed hydrology and for managers and engineers tasked with designing appropriate flood and NPS pollution control measures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Headwater streams expand, contract, and disconnect in response to seasonal moisture conditions or those related to individual precipitation events. The fluctuation of the surface flow extent, or active drainage network, reflects catchment storage characteristics and has important impacts on stream ecology; however, the hydrological mechanisms that drive this phenomenon are still uncertain. Here, we present field surveys of the active drainage networks of four headwater streams in Central Idaho's Frank Church‐River of No Return Wilderness (7–21 km2) spanning the spring and summer months of 2014. We report the total length of the active drainage networks, which varied as a power law function with stream discharge with an average exponent of 0.11 ± 0.03 (range of 0.05–0.20). Generally, these active drainage networks were less responsive to changes in discharge than many streams in past studies. We observed that the locations where surface flow originates, or flowheads, were often stable, and an average of 64% of the change in active drainage network length was explained by downstream discontinuities. Analysis of geologic and geomorphic characteristics of individual watersheds and flowheads suggests that most flowheads below approximately 2200 m are supported by stable flowpaths controlled by bedrock structure. At higher elevations, small accumulation areas and saturation of shallow and conductive soil and colluvium after snowmelt result in more mobile flowhead locations. The dynamics of active drainage networks can help illuminate the spatiotemporal structure of flowpaths supporting surface flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Hillslopes are thought to poorly record tectonic signals in threshold landscapes. Numerous previous studies of steep landscapes suggest that large changes in long‐term erosion rate lead to little change in mean hillslope angle, measured at coarse resolution. New LiDAR‐derived topography data enables a finer examination of threshold hillslopes. Here we quantify hillslope response to tectonic forcing in a threshold landscape. To do so, we use an extensive cosmogenic beryllium‐10 (10Be)‐based dataset of catchment‐averaged erosion rates combined with a 500 km2 LiDAR‐derived 1 m digital elevation model to exploit a gradient of tectonic forcing and topographic relief in the San Gabriel Mountains, California. We also calibrate a new method of quantifying rock exposure from LiDAR‐derived slope measurements using high‐resolution panoramic photographs. Two distinct trends in hillslope behavior emerge: below catchment‐mean slopes of 30°, modal slopes increase with mean slopes, slope distribution skewness decreases with increasing mean slope, and bedrock exposure is limited; above mean slopes of 30°, our rock exposure index increases strongly with mean slope, and the prevalence of angle‐of‐repose debris wedges keeps modal slopes near 37°, resulting in a positive relationship between slope distribution skewness and mean slope. We find that both mean slopes and rock exposure increase with erosion rate up to 1 mm/a, in contrast to previous work based on coarser topographic data. We also find that as erosion rates increase, the extent of the fluvial network decreases, while colluvial channels extend downstream, keeping the total drainage density similar across the range. Our results reveal important textural details lost in 10 or 30 m resolution digital elevation models of steep landscapes, and highlight the need for process‐based studies of threshold hillslopes and colluvial channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We report here the results of a near-bottom geophysical survey of the Reykjanes Ridge, a mid-ocean ridge that is oriented obliquely to the perpendicular spreading direction. From a combination of the bathymetric profiles, side-scan sonar data, and regional bathymetric maps we infer that the present center of spreading is made up of a number of N15°E-trending en echelon ridge segments in the southern half of our survey area. Insufficient data prevent the identification of the spreading pattern in the northern half. The side-scan records show that the ridge flanks are highly fractured by inward-facing faults displaced 40 m or less and trending in a N21°E direction. The lack of side-scan features parallel to the spreading direction except in the southernmost portion of the survey area suggests that the ridge segments are not connected by transform faults in the usual sense. Although the mechanism by which en echelon ridge segments can be maintained during sea-floor spreading over time is unclear, similar patterns of crustal accretion have been reported on Iceland. It appears that the accretionary processes along the Reykjanes Ridge are more related to those of Iceland than to those of typical mid-ocean ridges.  相似文献   

11.
The paper focusses on connectivity in the context of infiltration‐excess overland flow and its integrated response as slope‐base overland flow hydrographs. Overland flow is simulated on a sloping surface with some minor topographic expression and spatially differing infiltration rates. In each cell of a 128 × 128 grid, water from upslope is combined with incident rainfall to generate local overland flow, which is stochastically routed downslope, partitioning the flow between downslope neighbours. Simulations show the evolution of connectivity during simple storms. As a first approximation, total storm runoff is similar everywhere, discharge increasing proportionally with drainage area. Moderate differences in plan topography appear to have only a second‐order impact on hydrograph form and runoff amount. Total storm response is expressed as total runoff, runoff coefficient or total volume infiltrated; each plotted against total storm rainfall, and allowing variations in average gradient, overland flow roughness, infiltration rate and storm duration. A one‐parameter algebraic expression is proposed that fits simulation results for total runoff, has appropriate asymptotic behaviour and responds rationally to the variables tested. Slope length is seen to influence connectivity, expressed as a scale distance that increases with storm magnitude and can be explicitly incorporated into the expression to indicate runoff response to simple events as a function of storm size, storm duration, slope length and gradient. The model has also been applied to a 10‐year rainfall record, using both hourly and daily time steps, and the implications explored for coarser scale models. Initial trails incorporating erosion continuously update topography and suggest that successive storms produce an initial increase in erosion as rilling develops, while runoff totals are only slightly modified. Other factors not yet considered include the dynamics of soil crusting and vegetation growth. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Previous studies in Japanese mountains have shown that drainage density (D) correlates negatively with relief (R) and the erosion rate (E), whereas elsewhere both R and E correlate positively with D. To investigate the inconsistency, this paper compares two types of D–R relations for eight mountain river basins in central Japan. R is computed from a digital elevation model for 1109 morphometric samples of area 0·5 km × 0·5 km. Drainage networks in these cells were first constructed by map criteria applied previously in Japan — deeply notched V-shaped contours with an angle <53°. The resulting D correlates negatively with R, confirming preceding studies. When drainage lines along shallower hollows were added, however, the calculated D essentially constant. These relations arise from active landsliding in high-relief terrains, which has eroded steep channel banks into gentle ones. The decline of channel banks with increasing R is accelerated in terrains underlain by soft rocks, because of rapid erosion. The constant D for all the drainage lines indicates a uniform frequency or spacing of ridges and hollows on hillslopes in rugged humid mountains. Because the D–R and D–E relations for Japan reflect a uniquely Japanese physiographic setting characterized by frequent landsliding, they differ from those relations for other regions where channelization by gullying predominates. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
A series of 188 rainfall plot simulations was conducted on grass, shrub, oak savanna, and juniper sites in Arizona and Nevada. A total of 897 flow velocity measurements were obtained on 3.6% to 39.6% slopes with values ranging from 0.007 m s‐1 to 0.115 m s‐1. The experimental data showed that shallow flow velocity on rangelands was related to discharge and ground litter cover and was largely independent of slope gradient or soil characteristics. A power model was proposed to express this relationship. These findings support the slope–velocity equilibrium hypothesis. Namely, eroding soil surfaces evolve such that steeper areas develop greater hydraulic roughness. As a result overland flow velocity becomes independent of the slope gradient over time. Our findings have implications for soil erosion modeling suggesting that hydraulic friction is a dynamic, slope and discharge dependent property. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes evidence for the role of groundwater sapping and seepage erosion processes in the development of valleys which cut the southern edge of the Hackness Hills plateau in North Yorkshire, England. The development of drainage in this region has previously been suggested to relate to erosion by Late Devensian sub-aerial glacial meltwater channels. The role of groundwater erosion is investigated through a combination of geomorphological studies, lithological logging and X-ray diffraction (XRD) analyses. The geology of the region consists of a series of permeable Middle and Upper Jurassic lithologies (the Corallian sequence and Lower Calcareous Grit) which overlie the impermeable Upper Oxford Clay. The rocks dip gently to the south at between 1° and 4° and are relatively unfolded. Valleys exhibit many characteristic features of groundwater sapping networks. They rise abruptly at the edge of the plateau with amphitheatre-like valley heads, alcoves in headwalls, steep bedrock side walls, flat floors, spring sites and seepage zones in many valley flanks. Lithological logging indicates that sites of groundwater emergence usually occur either at or slightly above the boundary of the Upper Oxford Clay and Lower Calcareous Grit. XRD analyses of bedrock samples indicate that seepage occurs within siltstones which contain no clay but a variable percentage of calcite. The cause of groundwater emergence is attributed to decreasing grain size and increasing calcite cementation within bedrock which combine to reduce permeability. Development of valleys in the Hackness Hills is suggested to have occurred by a combination of headward erosion by groundwater sapping processes operating in an up-dip direction superimposed onto a valley morphology shaped by surface fluvial erosion.  相似文献   

15.
A mathematical model was developed for simulating runoff generation and soil erosion on hillslopes. The model is comprised of three modules: one for overland flow, one for soil infiltration, and one for soil erosion including rill erosion and interrill erosion. Rainfall and slope characteristics affecting soil erosion on hillslopes were analysed. The model results show that the slope length and gradient, time distribution rainfall, and distribution of rills have varying influence on soil erosion. Erosion rate increases nonlinearly with increase in the slope length; a long slope length leads to more serious erosion. The effect of the slope gradient on soil erosion can be both positive and negative. Thus, there exists a critical slope gradient for soil erosion, which is about 45° for the rate of erosion at the end of the slope and about 25° for the accumulated erosion. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
G. V. Wilson 《水文研究》2013,27(14):2032-2040
The internal erosion of soil pipes can induce pipe collapses that affect soil erosion processes and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe collapses, and the location, size and surface elevation was measured with differential GPS. A total of 143 of the 145 pipe collapses were found in cropland, and the density was approximately 0.58 collapses per hectare. The spatial distribution of pipe collapses was not uniform as pipe collapses were concentrated in the flat alluvial plains where the land use was dominated by cropland. One of the four parcels had 90% of the pipe collapses with a density of 7.7 collapses per hectare. The mean depth, area and volume of these pipe collapses were 0.12 m, 0.34 m2 and 0.02 m3, respectively, and all these properties exhibited a skewed distribution. The drainage area–slope gradient equation, which has been widely used for erosion phenomenon prediction, did not represent pipe collapses in this study as the coefficient of determination was <0.01. This is clear evidence that subsurface flow is not represented by surface topographic characteristics. The pipe collapses were found to intercept runoff, thereby reducing the slope length factor by 6% and the drainage area by 7%. Both of these factors can reduce the sheet and rill erosion; however, the increased subsurface flow could enhance ephemeral gully erosion. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
During past decades, a diverse system of subsistence agriculture in south‐east Spain (annual rainfall of less than 300 mm) has been overturned in favour of large‐scale plantations of almond trees without consideration for topography and related spatial patterns in soil hydrological properties. The objective of this paper is to investigate the spatial pattern in soil physical properties induced by this cultivation system, and to highlight its impact on the water balance. Soil properties were recorded along hillslopes with shallow soils developed on slates and greywackes in the upper part of the Guadelentin drainage basin (Murcia region). Frequent tillage of these almond plantations covering entire hillslopes has resulted in denudation by tillage erosion on the topographic convexities, as well as transport of rock fragments and fine earth along the slopes. These processes have created a systematic spatial pattern of soil thickness and rock fragment content: shallow and stony soils on the topographic convexities and deep soils with a rock fragment mulch in the concavities at the foot of the slopes. At the same time, a negative relationship between rock fragment content and fine earth bulk density was observed. The impact of this spatial pattern in soil properties on the water balance was evaluated using the PATTERN one‐dimensional hydrological and plant growth model. The model simulates the water balance of soil profiles covering the observed variation in soil thickness, stoniness and bulk density. The model results indicate that the highest rates of infiltration, evaporation and drainage, as well as the lowest rates of overland flow are restricted to shallow soils on the hilltops. In contrast, the deeper soils in the valley bottoms produce a more stable moisture regime than shallower soils, which tend to saturate and dry out quickly. These model results are in agreement with the spatial patterns of almond productivity: an asymptotic increase with soil thickness. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Eruptions in shallow water typically produce cones of volcaniclastic material. In order to identify any systematic effects of water depth and other environmental parameters on cone morphology, we have measured the heights and widths of cones in multibeam echo-sounder data from a submarine ridge extending southeast from Pico Island, Azores. XRF analyses of dredged samples show that lavas here vary compositionally from alkali basalt to trachybasalt and trachyandesite. Cones in deeper water are generally steep-sided with upper flanks close to 30°, the dip of talus at the angle of repose. However, height/width ratios of cones vary more in shallow water (200?C400-m summit depth) with extreme values below 0.1; while some shallow-water cones are steep-sided as in deep water, others are much flatter. Three such cones lie on a bench at 300-m depth immediately east of Pico Island and have flank slopes of only 10?C20°. We speculate that exceptionally shallow cone slopes here were produced by forced spreading of the erupting columns on reaching the water?Cair density barrier.  相似文献   

19.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The Manning equation is one of the most widely used formulae for calculating the velocity of shallow overland flow in hydrological and erosion models. Precise estimation of the Manning's friction coefficient (n) is critical to determining overland flow and soil erosion processes. Few studies have been conducted to quantify the effects of sediment load on Manning's n on steep slopes. This study was conducted to investigate the potential effects of sediment load on Manning's n in a flume with a fixed bed, under wide ranges of hydraulics and sediment loads. Slope gradient varied from 8·7 to 34·2%, unit flow rate from 0·66 to 5·26 × 10?3 m2 s?1, and sediment load from 0 to 6·95 kg m?1 s?1. The Reynolds number ranged from 350 to 5899. Results showed that Manning's n varied in both sediment‐free and sediment‐laden flows ranging from 0·012 to 0·055. The apparent Manning's coefficients of sediment‐laden flow were much greater than those of sediment‐free flow. The mean Manning coefficient of sediment‐laden flow was 51·27% greater than the mean value of sediment‐free flow. For sediment‐laden flow, Manning's n could be estimated with a power function of unit flow discharge and sediment content. Further studies are needed to quantify the potential effects of sediment load on the Manning's n on erodible beds and in fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号