首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the local coordination and structure of Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water (buffered to pH 7 by 8 mM bicarbonate) using synchrotron-based X-ray absorption spectroscopy (XAS) at the K-edges of Fe, P, Ca, and As. Dissolved phosphate, silicate, and Ca at different ratios relative to each other and to Fe affect the forming Fe(III)-phases in a complex manner. The high affinity of phosphate for Fe(III) results in the predominant precipitation of Fe(III)-phosphate as long as dissolved phosphate is present, with Fe(III) polymerization limited to small oligomers. In Ca-containing solution, Ca uptake by Fe(III)-Ca-phosphate involves the linkage and coagulation of negatively charged Fe(III)-phosphate oligomers via Ca-O-P bonds. In the absence of phosphate, dissolved silicate at Si/Fe ratios above ∼0.5 results in the formation of hydrous ferric oxide (HFO) with mainly edge-sharing Fe-Fe linkage. At lower Si/Fe ratios of ∼0.5-0.1, mainly 2-line ferrihydrite (2L-Fh) with both edge- and corner-sharing Fe-Fe linkage forms. Only in the absence of phosphate at low Si/Fe ratio, lepidocrocite (Lp) forms. In solutions containing sufficient Fe(II), aeration results in the sequential precipitation of Fe(III)-(Ca-)phosphate, HFO or 2L-Fh (depending on solution Si/Fe), and finally Lp. The amount and oxidation state of As co-precipitated with Fe(III) are controlled by the co-oxidation of As(III) with Fe(II), which increases with initial Fe/As ratio, and the competitive uptake of phosphate, As(V) and less strongly sorbing silicate and As(III). This study demonstrates that the diversity and sequence of short-range-ordered Fe(III)-precipitates forming by Fe(II) oxidation in near-neutral natural waters depend on water chemistry. Because differences in the colloidal stability and biogeochemical reactivity of these phases will affect the fate of associated major and trace elements, the different Fe(III)-precipitates and their specific biogeochemical properties must be taken into account when addressing nutrient and contaminant dynamics at redox boundaries in natural and engineered systems.  相似文献   

2.
We investigated Fe(III)-precipitates formed from Fe(II) oxidation in water at pH 7 as a function of dissolved Fe(II), As(III), phosphate, and silicate in the absence and presence of Ca. We used transmission electron microscopy (TEM), including selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX) to characterize the morphology, structure and elemental composition of the precipitates. Results from our companion X-ray absorption spectroscopy (XAS) study suggested that the oxidation of Fe(II) leads to the sequential formation of distinct polymeric units in the following order: Fe(III)-phosphate oligomers in the presence of phosphate, silicate-rich hydrous ferric oxide (HFO-Si) at high Si/Fe (>0.5) or 2-line ferrihydrite (2L-Fh) at lower Si/Fe (∼0.1-0.5), and lepidocrocite (Lp) in the absence of phosphate at low Si/Fe (<0.1). Results from this study show that the size of the polymeric units increased along the same sequence and that the aggregation of these polymeric units resulted in spherical particles with characteristic surface textures changing from smooth to coarse. The diameter of the spherical particles increased from 15 to 380 nm as the molar ratio (P + Si + As)/Fe(II) in the starting solution decreased and larger spherical particles precipitated from Ca-containing than from Ca-free solutions. These trends suggested that the size of the spherical particles was controlled by the charge of the polymeric units. Spherical particles coagulated into flocs whose size was larger in the presence than in the absence of Ca. Further observations pointed to the importance of Fe(II) oxidation and polymerization versus polymer aggregation and floc formation kinetics in controlling the spatial arrangement of the different polymeric units within Fe(III)-precipitates. The resulting structural and compositional heterogeneity of short-range-ordered Fe(III)-precipitates likely affects their colloidal stability and their chemical reactivity and needs to be considered when addressing the fate of co-transformed trace elements such as arsenic.  相似文献   

3.
The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iron minerals investigated and that increasing amounts of adsorbed Si results in a decrease in isotope exchange between aqueous Fe(II) and the Fe(III) mineral. This suggests that the adsorption of Si inhibits the direct adsorption of Fe(II) onto the mineral surface, providing an explanation for the inhibitory effect of Si on the Fe(II)-catalysed transformation of Fe(III) minerals. During the synthesis of lepidocrocite and ferrihydrite, the presence of equimolar concentrations of Si and Fe resulted in the formation of 2-line ferrihydrite containing co-precipitated Si in both cases. Isotope exchange experiments conducted with this freeze-dried Si co-precipitated ferrihydrite species (Si-ferrihydrite) demonstrated that the rate and extent of isotope exchange between aqueous Fe(II) and solid 55Fe(III) was very similar to that of 2-line ferrihydrite formed in the absence of Si and which had not been allowed to dry. In contrast to un-dried ferrihydrite formed in the absence of Si, Si-ferrihydrite did not transform into a more crystalline Fe(III) mineral phase over the 7-day period of investigation. Reductive dissolution studies using ascorbic acid demonstrated that both dried Si-ferrihydrite and un-dried 2-line ferrihydrite were very reactive, suggesting these species may be major contributors to the rapid release of dissolved iron following flooding and the onset of conditions conducive to reductive dissolution in acid sulphate soil environments.  相似文献   

4.
Data from studies of dissimilatory bacterial (108 cells mL−1 of Shewanella putrefaciens strain CN32, pH 6.8) and ascorbate (10 mM, pH 3.0) reduction of two synthetic Fe(III) oxide coated sands and three natural Fe(III) oxide-bearing subsurface materials (all at ca. 10 mmol Fe(III) L−1) were analyzed in relation to a generalized rate law for mineral dissolution (Jt/m0 = k′(m/m0)γ, where Jt is the rate of dissolution and/or reduction at time t, m0 is the initial mass of oxide, and m/m0 is the unreduced or undissolved mineral fraction) in order to evaluate changes in the apparent reactivity of Fe(III) oxides during long-term biological vs. chemical reduction. The natural Fe(III) oxide assemblages demonstrated larger changes in reactivity (higher γ values in the generalized rate law) compared to the synthetic oxides during long-term abiotic reductive dissolution. No such relationship was evident in the bacterial reduction experiments, in which temporal changes in the apparent reactivity of the natural and synthetic oxides were far greater (5-10 fold higher γ values) than in the abiotic reduction experiments. Kinetic and thermodynamic considerations indicated that neither the abundance of electron donor (lactate) nor the accumulation of aqueous end-products of oxide reduction (Fe(II), acetate, dissolved inorganic carbon) are likely to have posed significant limitations on the long-term kinetics of oxide reduction. Rather, accumulation of biogenic Fe(II) on residual oxide surfaces appeared to play a dominant role in governing the long-term kinetics of bacterial crystalline Fe(III) oxide reduction. The experimental findings together with numerical simulations support a conceptual model of bacterial Fe(III) oxide reduction kinetics that differs fundamentally from established models of abiotic Fe(III) oxide reductive dissolution, and indicate that information on Fe(III) oxide reactivity gained through abiotic reductive dissolution techniques cannot be used to predict long-term patterns of reactivity toward enzymatic reduction at circumneutral pH.  相似文献   

5.
Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P.  相似文献   

6.
The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behavior with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L−1 Fe(III)T]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 μm size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center.  相似文献   

7.
Iron (Fe) and manganese (Mn) are the two most common redox-active elements in the Earth’s crust and are well known to influence mineral formation and dissolution, trace metal sequestration, and contaminant transformations in soils and sediments. Here, we characterized the reaction of aqueous Fe(II) with pyrolusite (β-MnO2) using electron microscopy, X-ray diffraction, aqueous Fe and Mn analyses, and 57Fe Mössbauer spectroscopy. We reacted pyrolusite solids repeatedly with 3 mM Fe(II) at pH 7.5 to evaluate whether electron transfer occurs and to track the evolving reactivity of the Mn/Fe solids. We used Fe isotopes (56 and 57) in conjunction with 57Fe Mössbauer spectroscopy to isolate oxidation of Fe(II) by Fe(III) precipitates or pyrolusite. Using these complementary techniques, we determined that Fe(II) is initially oxidized by pyrolusite and that lepidocrocite is the dominant Fe oxidation product. Additional Fe(II) exposures result in an increasing proportion of magnetite on the pyrolusite surface. Over a series of nine 3 mM Fe(II) additions, Fe(II) continued to be oxidized by the Mn/Fe particles suggesting that Mn/Fe phases are not fully passivated and remain redox active even after extensive surface coverage by Fe(III) oxides. Interestingly, the initial Fe(III) oxide precipitates became further reduced as Fe(II) was added and additional Mn was released into solution suggesting that both the Fe oxide coating and underlying Mn phase continue to participate in redox reactions when freshly exposed to Fe(II). Our findings indicate that Fe and Mn chemistry is influenced by sustained reactions of Fe(II) with Mn/Fe oxides.
  相似文献   

8.
Solid and colloidal iron oxides are commonly involved in early diagenesis. More readily available soluble Fe(III) should accelerate the cycling of iron (Fe) and sulfur (S) in sediments. Experiments with synthetic solutions (Taillefert et al. 2000) showed that soluble Fe(III) (i.e., <50 nm diameter) reacts at a mercury voltammetric electrode at circumneutral pH if it is complexed by an organic ligand. The reactivity of soluble organic-Fe(III) with sulfide is greatly increased compared to its solid equivalent (e.g., amorphous hydrous iron oxides or goethite). We report here data from two different creeks of the Hackensack Meadowlands District (New Jersey) collected with solid state Au/Hg voltammetric microelectrodes and other conventional techniques, which confirm the existence of soluble organic-Fe(III) in sediments and its interaction with sulfide. Chemical profiles in these two anoxic sediments show the interaction between iron and sulfur during early diagenesis. Soluble organic-Fe(III) and Fe(II) are dominant in a creek where sulfide is negligible. This dominance suggests that the reductive dissolution of iron oxides goes through the dissolution of solid Fe(III), then reduction to Fe(II), or that soluble organic-Fe(III) is formed by chemical or microbial oxidation of organic-Fe(II) complexes. In a creek sediment where sulfide occurs in significant concentration, the reductive dissolution of Fe(III) is followed by formation of FeS(aq), which further precipitates. Dissolved sulfide may influence the fate of soluble organic-Fe(III), but the pH may be the key variable behind this process. The high reactivity of soluble organic-Fe(III) and its mobility may result in the shifting of local reactions, at depths where other electron acceptors are used. These data also suggest that estuarine and coastal sediments may not always be at steady state.  相似文献   

9.
Sediments from the Red River and from an adjacent floodplain aquifer were investigated with respect to the speciation of Fe and As in the solid phase, to trace the diagenetic changes in the river sediment upon burial into young aquifers, and the related mechanisms of arsenic release to the groundwater. Goethite with subordinate amounts of hematite were, using Mössbauer spectroscopy, identified as the iron oxide minerals present in both types of sediment. The release kinetics of Fe, As, Mn and PO4 from the sediment were investigated in leaching experiments with HCl and 10 mM ascorbic acid, both at pH 3. From the river sediments, most of the Fe and As was mobilized by reductive dissolution with ascorbic acid while HCl released very little Fe and As. This suggests As to be associated with an Fe-oxide phase. For oxidized aquifer sediment most Fe was mobilized by ascorbic acid but here not much As was released. However, the reduced aquifer sediments contained a large pool of Fe(II) and As that is readily leached by HCl, probably derived from an unidentified authigenic Fe(II)-containing mineral which incorporates As as well. Extraction with ascorbic acid indicates that the river sediments contain both As(V) and As(III), while the reduced aquifer sediment almost exclusively releases As(III). The difference in the amount of Fe(II) leached from river and oxidized aquifer sediments by ascorbic acid and HCl, was attributed to reductive dissolution of Fe(III). The reactivity of this pool of Fe(III) was quantified by a rate law and compared to that of synthetic iron oxides. In the river mud, Fe(III) had a reactivity close to that of ferrihydrite, while the river sand and oxidized aquifer sediment exhibited a reactivity ranging from lepidocrocite or poorly crystalline goethite to hematite. Mineralogy by itself appears to be a poor predictor of the iron oxide reactivity in natural samples using the reactivity of synthetic Fe-oxides as a reference. Sediments were incubated, both unamended and with acetate added, and monitored for up to 2 months. The river mud showed the fastest release of both Fe and As, while the effect of acetate addition was minor. This suggests that the presence of reactive organic carbon is not rate limiting. In the case of the river and aquifer sediments, the release of Fe and As was always stimulated by acetate addition and here reactive organic carbon was clearly the rate limiting factor. The reduced aquifer sediment apparently can sustain slower but prolonged microbially-driven release of As. The highly reactive pools of Fe(III) and As in the river mud could be due to reoxidation of As and Fe contained in the reducing groundwater from the floodplain aquifers that are discharging into the river. Deposition of the suspended mud on the floodplain during high river stages is proposed to be a major flux of As onto the floodplain and into the underlying aquifers.  相似文献   

10.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

11.
Fe(III) solid phases are the products of Fe(II) oxidation by Fe(II)-oxidizing bacteria, but the Fe(III) phases reported to form within growth experiments are, at times, poorly crystalline and therefore difficult to identify, possibly due to the presence of ligands (e.g., phosphate, carbonate) that complex iron and disrupt iron (hydr)oxide precipitation. The scope of this study was to investigate the influences of geochemical solution conditions (pH, carbonate, phosphate, humic acids) on the Fe(II) oxidation rate and Fe(III) mineralogy. Fe(III) mineral characterization was performed using 57Fe-Mössbauer spectroscopy and μ-X-ray diffraction after oxidation of dissolved Fe(II) within Mops-buffered cell suspensions of Acidovorax sp. BoFeN1, a nitrate-reducing, Fe(II)-oxidizing bacterium. Lepidocrocite (γ-FeOOH) (90%), which also forms after chemical oxidation of Fe(II) by dissolved O2, and goethite (α-FeOOH) (10%) were produced at pH 7.0 in the absence of any strongly complexing ligands. Higher solution pH, increasing concentrations of carbonate species, and increasing concentrations of humic acids promoted goethite formation and caused little or no changes in Fe(II) oxidation rates. Phosphate species resulted in Fe(III) solids unidentifiable to our methods and significantly slowed Fe(II) oxidation rates. Our results suggest that Fe(III) mineralogy formed by bacterial Fe(II) oxidation is strongly influenced by solution chemistry, and the geochemical conditions studied here suggest lepidocrocite and goethite may coexist in aquatic environments where nitrate-reducing, Fe(II)-oxidizing bacteria are active.  相似文献   

12.
The effects of elevated pH, ionic strength, and temperature on sediments in the vadose zone are of primary importance in modeling contaminant transport and understanding the environmental impact of tank leakage at nuclear waste storage facilities like those of the Hanford site. This study was designed to investigate biotite dissolution under simulated high level waste (HLW) conditions and its impact on Cr(VI) reduction and immobilization. Biotite dissolution increased with NaOH concentrations in the range of 0.1 to 2 mol L-1. There was a corresponding release of K, Fe, Si, and Al to solution, with Si and Al showing a complex pattern due to the formation of secondary zeolite minerals. Dissolved Fe concentrations were an order of magnitude lower than the other elements, possibly due to the formation of green rust and Fe(OH)2. The reduction of Cr(VI) to Cr(III) also increased with increased NaOH concentration. A homogeneous reduction of chromate by Fe(II)aq released through biotite dissolution was probably the primary pathway responsible for this reaction. Greater ionic strengths increased biotite dissolution and consequently increased Fe(II)aq release and Cr(VI) removal. The results indicated that HLW would cause phyllosilicate dissolution and the formation of secondary precipitates that would have a major impact on radionuclide and contaminant transport in the vadose zone at the Hanford site.  相似文献   

13.
Oxidation of mackinawite (FeS) and concurrent mobilization of arsenic were investigated as a function of pH under oxidizing conditions. At acidic pH, FeS oxidation is mainly initiated by the proton-promoted dissolution, which results in the release of Fe(II) and sulfide in the solution. While most of dissolved sulfide is volatilized before being oxidized, dissolved Fe(II) is oxidized into green rust-like precipitates and goethite (α-FeOOH). At basic pH, the development of Fe(III) (oxyhydr)oxide coating on the FeS surface inhibits the solution-phase oxidation following FeS dissolution. Instead, FeS is mostly oxidized into lepidocrocite (γ-FeOOH) via the surface-mediated oxidation without dissolution. At neutral pH, FeS is oxidized via both the solution-phase oxidation following FeS dissolution and the surface-mediated oxidation mechanisms. The mobilization of arsenic during FeS oxidation is strongly affected by FeS oxidation mechanisms. At acidic pH (and to some extent at neutral pH), the rapid FeS dissolution and the slow precipitation of Fe (oxyhydr)oxides results in arsenic accumulation in water. In contrast, the surface-mediated oxidation of FeS at basic pH leads to the direct formation of Fe (oxyhydr)oxides, which provides effective adsorbents for As under oxic conditions. At acidic and neutral pH, the solution-phase oxidation of dissolved Fe(II) accelerates the oxidation of the less adsorbing As(III) to the more adsorbing As(V). This study reveals that the oxidative mobilization of As may be a significant pathway for arsenic enrichment of porewaters in sulfidic sediments.  相似文献   

14.
Manganese (oxy)hydroxides (MnOX) play important roles in the oxidation and mobilization of toxic As(III) in natural environments. Abiotic oxidation of Mn(II) to MnOX in the presence of Fe minerals has been proved to be an important pathway in the formation of Mn(III, IV) (oxy)hydroxides. However, interactions between Mn(II) and As(III) in the presence of Fe minerals are still poorly understood. In this study, abiotic oxidation of Mn(II) on lepidocrocite, and its effect on the oxidation and mobilization of As(III) were investigated. The results show that MnOX species are detected on lepidocrocite and their contents increase with increasing pH values ranging from 7.5 to 8.4. After 10 days, an MnOx component, groutite (α-MnOOH) was found on lepidocrocite. During the simultaneous oxidation of Mn(II) and As(III), and the As(III) pre-adsorbed processes, the presence and oxidation of Mn(II) significantly promotes the removal of soluble As(III). In addition, MnOx formed on lepidocrocite also contributes to the oxidation of soluble and adsorbed As(III) to As(V), the latter being subsequently released into solution. In the process where Mn(II) is pre-adsorbed on lepidocrocite, less As(III) is removed, given that the active sites occupied by MnOx inhibit the adsorption of As(III). In all experiments, the removal percentages of As(III) and the release of As(V) are correlated positively with pH values and initial concentrations of Mn(II), although they are not apparent in the Mn(II) pre-adsorbed system.  相似文献   

15.
Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)aq and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in 56Fe/54Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ56FeFe(OH)3-Fe(II)aq fractionation factor of +3.0‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)aq and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)aq by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)aq oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)aq and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and abiological Fe(II) oxidation.  相似文献   

16.
It has been suggested that Fe(II)-oxidizing photoautotrophic bacteria may have catalyzed the precipitation of an ancient class of sedimentary deposits known as Banded Iron Formations. In order to evaluate this claim, it is necessary to define and understand this process at a molecular level so that putative Fe-isotope “biosignatures” in ancient rocks can be interpreted. In this report, we characterize the substrates and products of photoautotrophic Fe(II)-oxidation by three phylogenetically distinct Fe(II)-oxidizing bacteria. In every case, dissolved Fe(II) is used as the substrate for oxidation, and there is no evidence for active dissolution of poorly soluble Fe(II)-minerals by biogenic organic ligands. Poorly crystalline Fe(III) (hydr)oxide mineral phases are initially precipitated, and as they age, rapidly convert to the crystalline minerals goethite and lepidocrocite. Although the precipitates appear to associate with the cell wall, they do not cover it entirely, and precipitate-free cells represent a significant portion of the population in aged cultures. Citrate is occasionally detected at nanomolar concentrations in all culture fluids, whereas an unknown organic molecule is always present in two out of the three bacterial cultures. Whether these molecules are released by the cell to bind Fe(III) and prevent the cell from encrustation by Fe(III) (hydr)oxides is uncertain, but seems unlikely if we assume Fe(II)-oxidation occurs at the cell surface. In light of the energetic requirement the cell would face to produce ligands for this purpose, and given the local acidity metabolically generated in the microenvironment surrounding Fe(II)-oxidizing cells, our results suggest that Fe(III) is released in a dissolved form as an inorganic aqueous complex and/or as a colloidal aggregate prior to mineral precipitation. The implication of these results for the interpretation of Fe-isotope fractionation measured for this class of bacteria (Croal et al., 2004) is that equilibrium processes involving free biological ligands do not account for the observed fractionation.  相似文献   

17.
The reaction between dissolved sulfide and synthetic iron (oxyhydr)oxide minerals was studied in artificial seawater and 0.1 M NaCl at pH 7.5 and 25°C. Electron transfer between surface-complexed sulfide and solid-phase Fe(III) results in the oxidation of dissolved sulfide to elemental sulfur, and the subsequent dissolution of the surface-reduced Fe. Sulfide oxidation and Fe(II) dissolution kinetics were evaluated for freshly precipitated hydrous ferric oxide (HFO), lepidocrocite, goethite, magnetite, hematite, and Al-substituted lepidocrocite. Reaction kinetics were expressed in terms of an empirical rate equation of the form:
  相似文献   

18.
Reduction of As(V) and reductive dissolution and transformation of Fe (hydr)oxides are two dominant processes controlling As retention in soils and sediments. When developed within soils and sediments, Fe (hydr)oxides typically contain various impurities—Al being one of the most prominent—but little is known about how structural Al within Fe (hydr)oxides alters its biotransformation and subsequent As retention. Using a combination of batch and advective flow column studies with Fe(II) and Shewanella sp. ANA-3, we examined (1) the extent to which structural Al influences reductive dissolution and transformations of ferrihydrite, a highly reactive Fe hydroxide, and (2) the impact of adsorbed As on dissolution and transformation of (Al-substituted) ferrihydrite and subsequent As retention. Structural Al diminishes the extent of ferrihydrite reductive transformation; nearly three-orders of magnitude greater concentration of Fe(II) is required to induce Al-ferrihydrite transformation compared to pure two-line ferrihydrite. Structural Al decreases Fe(II) retention/incorporation on/into ferrihydrite and impedes Fe(II)-catalyzed transformation of ferrihydrite. Moreover, owing to cessation of Fe(II)-induced transformation to secondary products, Al-ferrihydrite dissolves (incongruently) to a greater extent compared to pure ferrihydrite during reaction with Shewanella sp. ANA-3. Additionally, adsorption of As(V) to Al-ferrihydrite completely arrests Fe(II)-catalyzed transformation of ferrihydrite, and it diminishes the difference in the rate and extent of ferrihydrite and Al-ferrihydrite reduction by Shewanella sp. ANA-3. Our study further shows that reductive dissolution of Al-ferrihydrite results in enrichment of Al sites, and As(V) reduction accelerates As release due to the low affinity of As(III) on these non-ferric sites.  相似文献   

19.
Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L−1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (FeOx) relative to the Na-dithionite extractable fraction (FeDi), with generally high FeOx:FeDi ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe5HO3·4H2O) with lesser amounts of goethite (α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite (γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.  相似文献   

20.
The reactivity of iron(III) oxyhydroxides as reflected by their tendency to dissolve is of great importance in the redox cycling of iron and the bioavailability of iron to phytoplankton in natural waters. In this study, various iron(III) oxyhydroxides were produced by oxygenation of iron(II) in the presence of solutes, such as phosphate, sulfate, bicarbonate, valeric acid, TRIS, humic and fulvic acids, and in the presence of minerals, such as bentonite and δ-Al2O3 under conditions encountered in aquatic systems. The reactivity of the different iron(III) oxyhydroxides was subsequently assessed by means of a reductive dissolution using ascorbate and non-reductive dissolution using HQS (8-hydroxyquinoline-5-sulfonic acid) or oxalate. The experimental results show that the iron(III) oxyhydroxides with a low degree of polymerization exhibit higher reactivity than those with a high degree of polymerization or with high crystallinity. The quantity of active surface sites and the coordination arrangement of the functional groups at the surface of the iron(III) oxyhydroxides, especially the extent of the endstanding -OH groups per iron(III) ion determine the reactivity of iron(III) oxyhydroxides toward dissolution.Surfaces, such as clay and aluminum oxides, not only accelerate the oxygenation reaction of iron(II), but also induce the formation of iron(III) oxyhydroxides which are more active toward the dissolution reactions. Polymerization of iron(III) oxyhydroxides on the surfaces occurs predominantly in two dimensions rather than in three dimensions.In a laboratory experiment, the iron(III) oxyhydroxide formed in the presence of TRIS can be reduced by fulvic acid in a closed system under the following conditions: Fe(OH)3(s) 0.01 g/l, fulvic acid 5 mg/l, pH 7.5, 20°C. The kinetics of the reaction depend on the reactivity of iron(III) oxyhydroxide and reducing power of fulvic acid. Although reductants other than fulvic acid may be of importance in antural waters, this result provides the laboratory evidence that the >FeIII-OH/Fe(II) is able to act as an electron transfer mediator for the oxidation of natural organic substances, such as fulvic acid, by molecular oxygen either in the absence of microorganisms or as a supplement to microbial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号