首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemispheric pattern of solar filaments is considered in the context of the global magnetic field of the solar corona. In recent work Mackay and van Ballegooijen have shown how, for a pair of interacting magnetic bipoles, the observed chirality pattern could be explained by the dominant range of bipole tilt angles and helicity in each hemisphere. This study aims to test this earlier result through a direct comparison between theory and observations, using newly developed simulations of the actual surface and 3D coronal magnetic fields over a 6-month period, on a global scale. We consider two key components: (1) observations of filament chirality for the sample of 255 filaments and (2) our new simulations of the large-scale surface magnetic field. Based on a flux-transport model, these will be used as the lower boundary condition for the future 3D coronal simulations. Our technique differs significantly from those of other authors, where the coronal field is either assumed to be purely potential or has to be reset back to potential every 27 days for the photospheric field to remain accurate. In our case we ensure accuracy by the insertion of newly emerging bipolar active regions, based on observed photospheric synoptic magnetograms. The large-scale surface field is shown to remain accurate over the 6-month period, without any resetting. This new technique will enable future simulations to consider the long-term buildup and transport of helicity and shear in the coronal magnetic field over many months or years.  相似文献   

2.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

3.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

4.
We consider the physical origin of the hemispheric pattern of filament chirality on the Sun. Our 3D simulations of the coronal field evolution over a period of six months, based on photospheric magnetic measurements, were previously shown to be highly successful at reproducing observed filament chiralities. In this paper we identify and describe the physical mechanisms responsible for this success. The key mechanisms are found to be (1) differential rotation of north – south polarity inversion lines, (2) the shape of bipolar active regions, and (3) evolution of skew over a period of many days. As on the real Sun, the hemispheric pattern in our simulations holds in a statistical sense. Exceptions arise naturally for filaments in certain locations relative to bipolar active regions or from interactions among a number of active regions.  相似文献   

5.
Mackay  D. H.  Priest  E. R.  Gaizauskas  V.  van Ballegooijen  A. A. 《Solar physics》1998,180(1-2):299-312
In the last few years new observations have shown that solar filaments and filament channels have a surprising hemispheric pattern. To explain this pattern, a new theory for filament channel and filament formation is put forward. The theory describes the formation of a specific type of filament, namely the intermediate filament which forms either between active regions or at the boundary of an active region. It describes the formation in terms of the emergence of a sheared activity complex. The complex then interacts with remnant flux and, after convergence and flux cancellation, the filament forms in the channel. A key feature of the model is the net magnetic helicity of the complex. With the correct sign a filament channel can form, but with the opposite sign no filament channel forms after convergence. It is shown how the hemispheric pattern of helicity in emerging flux regions produces the observed hemispheric pattern for filaments.  相似文献   

6.
We discuss the study of solar magnetic fields based on the photospheric vector magnetograms of solar active regions which were obtained at Huairou Solar Observing Station near Beijing in the period of 22nd and 23th solar cycles. The measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic field. After the analysis on the formation process of delta configuration in some super active regions based on the photospheric vector magnetogram observations, some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, proposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and the relationship with magnetic shear in some delta active regions completely. (3) The proposition is that the large-scale delta active regions are formed from contribution by highly sheared non-potential magnetic flux bundles generated in the subatmosphere. We present some results of a study of the magnetic helicity. We also compare these results with other data sets obtained by magnetographs (or Stokes polarimeters) at different observatories, and analyze the basic chirality of the magnetic field in the solar atmosphere.  相似文献   

7.
The structure of electric current and magnetic helicity in the solar corona is closely linked to solar activity over the 11-year cycle, yet is poorly understood. As an alternative to traditional current-free “potential-field” extrapolations, we investigate a model for the global coronal magnetic field which is non-potential and time-dependent, following the build-up and transport of magnetic helicity due to flux emergence and large-scale photospheric motions. This helicity concentrates into twisted magnetic flux ropes, which may lose equilibrium and be ejected. Here, we consider how the magnetic structure predicted by this model – in particular the flux ropes – varies over the solar activity cycle, based on photospheric input data from six periods of cycle 23. The number of flux ropes doubles from minimum to maximum, following the total length of photospheric polarity inversion lines. However, the number of flux rope ejections increases by a factor of eight, following the emergence rate of active regions. This is broadly consistent with the observed cycle modulation of coronal mass ejections, although the actual rate of ejections in the simulation is about a fifth of the rate of observed events. The model predicts that, even at minimum, differential rotation will produce sheared, non-potential, magnetic structure at all latitudes.  相似文献   

8.
A filament is a cool, dense structure suspended in the solar corona. The eruption of a filament is often associated with a coronal mass ejection(CME), which has an adverse effect on space weather. Hence,research on filaments has attracted much attention in the recent past. The tilt angle of active region(AR)magnetic bipoles is a crucial parameter in the context of the solar dynamo, which governs the conversion efficiency of the toroidal magnetic field to poloidal magnetic field. Filaments always form over polarity inversion lines(PILs), so the study of tilt angles for these filaments can provide valuable information about generation of a magnetic field in the Sun. We investigate the tilt angles of filaments and other properties using McIntosh Archive data. We fit a straight line to each filament to estimate its tilt angle. We examine the variation of mean tilt angle with time. The latitude distribution of positive tilt angle filaments and negative tilt angle filaments reveals that there is a dominance of positive tilt angle filaments in the southern hemisphere and negative tilt angle filaments dominate in the northern hemisphere. We study the variation of the mean tilt angle for low and high latitudes separately. Investigations of temporal variation with filament number indicate that total filament number and low latitude filament number vary cyclically, in phase with the solar cycle. There are fewer filaments at high latitudes and they also show a cyclic pattern in temporal variation. We also study the north-south asymmetry of filaments with different latitude criteria.  相似文献   

9.
简要回顾了螺度引入太阳磁场研究中的历史过程,从物理角度讨论了相对磁螺度这个新的可观测量,并指出其在理论和观测中存在的问题;着重介绍了磁螺度在太阳大气中的分配问题;探讨了磁螺度和电流螺度的差别与联系、螺度半球手征性;列举介绍了磁螺度和其他太阳活动的联系,尤其是太阳爆发事件中的磁螺度问题;指出磁螺度理论中几个还没有解决的问题及今后可能取得进展的方向。  相似文献   

10.
太阳磁场观测研究   总被引:5,自引:0,他引:5  
简要回顾了近几年国际上太阳磁场研究的一些重要进展,包括耀斑与磁切和电流的关系,电流螺度和磁螺度,磁场拓扑性,三维磁场外推,色球磁场研究,日冕磁场研究,内网络磁元,磁流和振荡,极区磁场观测以及色球磁元观测等方面内容,同时也介绍了怀柔太阳观测站最近所取得的主要成果,自20世纪90年代以来,YOHKOH高分辨率的太阳X射线数据,SOHO的多波段大尺度观测,TRACE的高分辨太阳过渡区资料,为研究太阳磁场从内部到距离几十太阳半径处的大范围演化提供了依据,高效的空间资料结合长期的地面资料,将是正派推动太阳磁场研究的重要手段和必然趋势。  相似文献   

11.
R. Komm  S. Gosain  A. Pevtsov 《Solar physics》2014,289(2):475-492
We search for a signature of helicity flow from the solar interior to the photosphere and chromosphere. For this purpose, we study two active regions, NOAA 11084 and 11092, that show a regular pattern of superpenumbral whirls in chromospheric and coronal images. These two regions are good candidates for comparing magnetic/current helicity with subsurface kinetic helicity because the patterns persist throughout the disk passage of both regions. We use photospheric vector magnetograms from SOLIS/VSM and SDO/HMI to determine a magnetic helicity proxy, the spatially averaged signed shear angle (SASSA). The SASSA parameter produces consistent results leading to positive values for NOAA 11084 and negative ones for NOAA 11092 consistent with the clockwise and counter-clockwise orientation of the whirls. We then derive the properties of the subsurface flows associated with these active regions. We measure subsurface flows using a ring-diagram analysis of GONG high-resolution Doppler data and derive their kinetic helicity, h z . Since the patterns persist throughout the disk passage, we analyze synoptic maps of the subsurface kinetic helicity density. The sign of the subsurface kinetic helicity is negative for NOAA 11084 and positive for NOAA 11092; the sign of the kinetic helicity is thus anticorrelated with that of the SASSA parameter. As a control experiment, we study the subsurface flows of six active regions without a persistent whirl pattern. Four of the six regions show a mixture of positive and negative kinetic helicity resulting in small average values, while two regions are clearly dominated by kinetic helicity of one sign or the other, as in the case of regions with whirls. The regions without whirls follow overall the same hemispheric rule in their kinetic helicity as in their current helicity with positive values in the southern and negative values in the northern hemisphere.  相似文献   

12.
To investigate the relations between coronal mass ejection (CME) speed and magnetic field properties measured in the photospheric surface of CME source regions, we selected 22 disk CMEs in the rising and early maximum phases of the current Solar Cycle 24. For the CME speed, we used two-dimensional (2D) projected speed observed by the Large Angle and Spectroscopic Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), as well as a 3D speed calculated from the triangulation method using multi-point observations. Two magnetic parameters of CME source regions were considered: the average of magnetic helicity injection rate and the total unsigned magnetic flux. We then classified the selected CMEs into two groups, showing: i) a monotonically increasing pattern with one sign of helicity (group A: 16 CMEs) and ii) a pattern of significant helicity injection followed by its sign reversal (group B: 6 CMEs). We found that: 1) 3D speed generally shows better correlations with the magnetic parameters than the 2D speed for 22 CME events in Solar Cycle 24; 2) 2D speed and the magnetic parameters of 22 CME events in this solar cycle have lower values than those of 47 CME events in Solar Cycle 23; 3) all events of group B in Solar Cycle 24 occur only after the beginning of the maximum phase, a trend well consistent with that shown in Solar Cycle 23; 4) the 2D speed and the helicity parameter of group B events continue to increase in the declining phase of Solar Cycle 23, while those of group A events abruptly decrease in the same period. Our results indicate that the two CME groups have a different tendency in the solar cycle variations of CME speed and the helicity parameters. Active regions that show a complex helicity evolution pattern tend to appear in the maximum and declining phases, while active regions with a relatively simple helicity evolution pattern appear throughout the whole solar cycle.  相似文献   

13.
Global Magnetic Patterns of Chirality   总被引:1,自引:0,他引:1  
Zirker  J. B.  Martin  S. F.  Harvey  K.  Gaizauskas  V. 《Solar physics》1997,175(1):27-44
During the past five years at least six manifestations of a global organization of solar magnetic fields have been recognized. The magnetic chirality (handedness) of the following features shows a hemispheric preference: filament channels, quiescent filaments, sunspot whorls, superpenumbral fibrils, coronal arcades, and interplanetary clouds associated with CMEs. Although the patterns are clear in the data, their interpretation and their possible connection to the dynamo is open to question. This paper reviews the observations of the patterns, corrects some misinterpretations, and offers a scenario for the origin of the most marked pattern, the chirality of filaments. We suggest the pattern arises from the reconnection of coronal loops, under the influence of supergranulation and differential rotation. Unlike alternative scenarios, ours relies only on observable surface motions and fields.  相似文献   

14.
The geoeffective magnetic cloud (MC) of 20 November 2003 was associated with the 18 November 2003 solar active events in previous studies. In some of these, it was estimated that the magnetic helicity carried by the MC had a positive sign, as did its solar source, active region (AR) NOAA 10501. In this article we show that the large-scale magnetic field of AR 10501 has a negative helicity sign. Since coronal mass ejections (CMEs) are one of the means by which the Sun ejects magnetic helicity excess into interplanetary space, the signs of magnetic helicity in the AR and MC must agree. Therefore, this finding contradicts what is expected from magnetic helicity conservation. However, using, for the first time, correct helicity density maps to determine the spatial distribution of magnetic helicity injections, we show the existence of a localized flux of positive helicity in the southern part of AR 10501. We conclude that positive helicity was ejected from this portion of the AR leading to the observed positive helicity MC.  相似文献   

15.
It is now accepted that the solar activity has direct impact on the Earth climate, but is also responsible for the geomagnetic storms. It is thus fundamental to understand the mechanisms responsible for this activity. We present here first some aspects of the solar activity at the different atmospheric layers of the sun: active region at photospheric levels, filaments (prominences) and flares at chromospheric level and CME's at coronal level. A quick sum‐up of the principal characteristics of each is given as well as the key questions still under investigation. In the second part, two principal parameters are presented to describe these features: helicity and topology. Finally, we sum‐up the observational challenges for new solar telescopes.  相似文献   

16.
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 – 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.  相似文献   

17.
Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity   总被引:1,自引:0,他引:1  
1 INTRODUCTIONObservations show that the magnetic helicity of solar magnetic structures has a predominantsign in each hemisphere of the Sun, positive in the southern hemisphere and negative in thenorthern, regardless of the solar cycle (Rust, 1994). The magnetic helicity is strictly conservedin the frame of ideal MHD (WOltjer, 1958), and approximately conserved in the presence ofresistive dissipation and magnetic reconnection in a highly conductive plajsma (Taylor, 1974;Berger, 1984; H…  相似文献   

18.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

19.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

20.
Bipolar active regions (ARs) are thought to be formed by twisted flux tubes, as the presence of such twist is theoretically required for a cohesive rise through the whole convective zone. We use longitudinal magnetograms to demonstrate that a clear signature of a global magnetic twist is present, particularly, during the emergence phase when the AR is forming in a much weaker pre-existing magnetic field environment. The twist is characterised by the presence of elongated polarities, called “magnetic tongues”, which originate from the azimuthal magnetic field component. The tongues first extend in size before retracting when the maximum magnetic flux is reached. This implies an apparent rotation of the magnetic bipole. Using a simple half-torus model of an emerging twisted flux tube having a uniform twist profile, we derive how the direction of the polarity inversion line and the elongation of the tongues depend on the global twist in the flux rope. Using a sample of 40 ARs, we verify that the helicity sign, determined from the magnetic polarity distribution pattern, is consistent with the sign derived from the photospheric helicity flux computed from magnetogram time series, as well as from other proxies such as sheared coronal loops, sigmoids, flare ribbons and/or the associated magnetic cloud observed in situ at 1 AU. The evolution of the tongues observed in emerging ARs is also closely similar to the evolution found in recent MHD numerical simulations. We also found that the elongation of the tongue formed by the leading magnetic polarity is significantly larger than that of the following polarity. This newly discovered asymmetry is consistent with an asymmetric Ω-loop emergence, trailing the solar rotation, which was proposed earlier to explain other asymmetries in bipolar ARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号