首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1 INTRoDUCTIONB1azars are rwho-loud AGNs characterized by emissions of strong and raPidiy wriablenOllthermal radiation over the elltire electromagntic spectrum. Syndritron ehasha followedby inverse ComPton scattering in a re1aivistic jet and beamd inio one directiOn is generallythought to be the IneCha8m powering these Objects (Kollgaard 1994; Urry & Paded 1995).All blazars have a sPectral energy distribution (SED) with tWO peak8 in a uFv rePesentation(von Montigny et al. 1995; S…  相似文献   

2.
Voyager's plasma probe observations suggest that there are at least three fundamentally different plasma regimes in Saturn: the hot outer magnetosphere, the extended plasma sheet, and the inner plasma torus. At the outer regions of the inner torus some ions have been accelerated to reach energies of the order of 43 keV. We develop a model that calculates the acceleration of charged particles in the Saturn's magnetosphere. We propose that the stochastic electric field associated to the observed magnetic field fluctuations is responsible of such acceleration. A random electric field is derived from the fluctuating magnetic field – via a Monte Carlo simulation – which then is applied to the momentum equation of charged particles seeded in the magnetosphere. Taking different initial conditions, like the source of charged particles and the distribution function of their velocities, we find that particles injected with very low energies ranging from 0.129 eV to 5.659 keV can be strongly accelerated to reach much higher energies ranging from 22.220 eV to 9.711 keV as a result of 125,000 hitting events (the latter are used in the numerical code to produce the particle acceleration over a predetermined distance).  相似文献   

3.
Litvinenko  Yuri E. 《Solar physics》2003,216(1-2):189-203
Traditional models for particle acceleration by magnetic reconnection in solar flares assumed a constant electric field in a steady reconnecting magnetic field. Although this assumption may be justified during the gradual phase of flares, the situation is different during the impulsive phase. Observed rapid variations in flare emissions imply that reconnection is non-steady and a time-varying electric field is present in a reconnecting current sheet. This paper describes exploratory calculations of charged particle orbits in an oscillating electric field present either at a neutral plane or a neutral line of two-dimensional magnetic field. A simple analytical model makes it possible to explain the effects of particle trapping and resonant acceleration previously noted by Petkaki and MacKinnon in a numerical simulation. As an application, electron acceleration to X-ray generating energies in impulsive solar flares is discussed within the context of the model.  相似文献   

4.
位于活动区磁中性线上方的暗条,随着活动区光球物质运动和磁结构演化,其上升运动规律呈多样性。根据暗条上升运动的特征,一般将其分为两类:第一类为缓慢上升(速度为Km.s^-1量级),在暗条上升过程中,亚电场中速是子能量为几十~100LeV量级(E〈ED,E为暗条表面电场强度,ED为经典Duecier场);第二类为快速上升(速度为几十~几百Km.s^-1量级)因暗条快速上升在其下方形成X型中性点,暗条加  相似文献   

5.
A time-dependent model for the energy of a flaring solar active region is presented based on an existing stochastic jump-transition model (Wheatland and Glukhov in Astrophys. J. 494, 858, 1998; Wheatland in Astrophys. J. 679, 1621, 2008 and Solar Phys. 255, 211, 2009). The magnetic free energy of an active region is assumed to vary in time due to a prescribed (deterministic) rate of energy input and prescribed (random) jumps downwards in energy due to flares. The existing model reproduces observed flare statistics, in particular flare frequency – size and waiting-time distributions, but modeling presented to date has considered only the time-independent choices of constant energy input and constant flare-transition rates with a power-law distribution in energy. These choices may be appropriate for a solar active region producing a constant mean rate of flares. However, many solar active regions exhibit time variation in their flare productivity, as exemplified by NOAA active region (AR) 11029, observed during October – November 2009 (Wheatland in Astrophys. J. 710, 1324, 2010). Time variation is incorporated into the jump-transition model for two cases: (1) a step change in the rates of flare transitions, and (2) a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The model exhibits flare-like event statistics. In each case the frequency – energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. The rollover is not observed if the mean free energy of the system is sufficiently large. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case 1 are presented which confirm the estimate for the relaxation time and the expected forms of the frequency – energy and waiting-time distributions. The simulation results provide a qualitative model for observed flare statistics in AR 11029.  相似文献   

6.
张波  李金岭  王广利 《天文学报》2004,45(3):320-329
利用实测资料和模拟数据,分析了在天测与测地VLBI数据处理软件CALC/SOLVE中,剩余钟行为连续分段线性拟合的局限性和周期函数拟合的可行性.对CALC/SOLVE系统增配了周期函数拟合模块,并选取了1990年至2001年的1567次天测与测地VLBI实验,进行了剩余钟行为两种拟合模型情况下的实测资料综合解算.结果表明,在获得同等水平的时延拟合残差加权均方根(wrms)的情况下,对剩余钟行为采用周期函数拟合,使得解算参数的个数相比于连续分段线性拟合有显著减少,提高了解算的自由度.虽然在两种模型情况下的台站和射电源坐标以及地球定向参数等的解算精度无显著差异,但周期函数拟合存在可以识别的优势,85%以上的台站坐标和74%以上的源坐标以及51%以上的EOP精度均有所提高,均值分别为0.02mm、0.3μas和1.5μas.  相似文献   

7.
Recent results of the gamma-ray Cherenkov astronomy definitely prove the existence of fast variability in the very high energy (V.H.E.) gamma-ray flux of some active galactic nuclei. The BL Lac PKS 2155-304 for instance showed variations down to a few minutes time scale. From standard light travel time argument, these variations put extremely strong constraints on the size of the TeV emitting zone, which has to be of the order of a few Schwarzschild radius, even for high values of the relativistic Doppler factor of the emitting jets. Such discovery is a challenge for particle acceleration scenarios, which have to imagine efficient acceleration processes at work in a very compact zone. Eventually, the immediate vicinity of the central black hole appears as the most conservative choice for the location of the TeV emission region of active galactic nuclei. In this paper, we propose a two-step mechanism for charged particle acceleration in the magnetosphere of a massive black hole surrounded by an accretion disk. Particles first gain energy by a stochastic process during the accretion phase. It is shown that effective proton acceleration up to energies 1017–1019 eV is possible in a low-luminosity magnetized accretion disk with 2D turbulent motion. The distribution function of energetic protons over energies is a power law function with typical index ≃−1. Here electrons are not very efficiently accelerated because of their drastic losses by synchrotron radiation. In a second time, part of the fast particles escape from the disk and are then entrained by the magnetic structure above the disk, in the rotating black hole magnetosphere. They thus gain additional energy by direct centrifugal mechanism, up to about 1020 eV for the protons and to 10–100 TeV for the electrons when they cross the light cylinder surface. Such energetic particles can further radiate in the TeV spectral range observed by Cherenkov experiments as HESS, MAGIC and VERITAS. Energetic protons can produce γ-radiation in the energy band 1 GeV–100 TeV and above mainly by nuclei collisions with the disk matter, clouds, or ambient low energy photons. Energetic electrons can also reach the required spectral range by inverse Compton emission. However their acceleration is less efficient due to heavy radiation losses, and only gained by centrifugal process during the second phase of the whole mechanism we describe. Our present analysis would therefore favor hadronic scenarios for TeV emission of active galactic nuclei. It is tempting to relate long term variability over years of TeV active galactic nuclei to the first stochastic acceleration phase, which also provides the needed power law particle distributions, while short term variability over minutes is more likely due to perturbations of the second fast direct acceleration phase.  相似文献   

8.
The series of nine impulsive, highly collimated beams of near-relativistic electrons seen by ACE/EPAM on 26 and 27 June 2004 occurred at a quiet time with respect to solar flare and CME production. However, they were accompanied by decametric type III radio bursts observed by WIND/WAVES, which had progressively higher starting frequencies, suggestive of coronal acceleration. There were no CMEs seen by SOHO/LASCO in association with any of the type III bursts except possibly the first. The energy spectrum of the electrons was soft, typically E−4.5 but extended up to at least ∼200 keV. We suggest that the source region for these events is in the high corona. We discuss this result in the context of solar electron acceleration at other times.  相似文献   

9.
Kocharov  Leon  Torsti  Jarmo  Laitinen  Timo  Teittinen  Matti 《Solar physics》1999,190(1-2):295-307
We have analyzed five solar energetic particle (SEP) events observed aboard the SOHO spacecraft during 1996–1997. All events were associated with impulsive soft X-ray flares, Type II radio bursts and coronal mass ejections (CMEs). Most attention is concentrated on the SEP acceleration during the first 100 minutes after the flare impulsive phase, post-impulsive-phase acceleration, being observed in eruptions centered at different solar longitudes. As a representative pattern of a (nearly) well-connected event, we consider the west flare and CME of 9 July 1996 (S10 W30). Similarities and dissimilarities of the post-impulsive-phase acceleration at large heliocentric-angle distance from the eruption center are illustrated with the 24 September 1997 event (S31 E19). We conclude that the proton acceleration at intermediate scales, between flare acceleration and interplanetary CME-driven shock acceleration, significantly contributes to the production of ≳10 MeV protons. This post-impulsive-phase acceleration seems to be caused by the CME lift-off.  相似文献   

10.
Rodin  A. V. 《Solar System Research》2003,37(2):101-111
The previously proposed (Rodin, 2002) method for calculating the microphysical properties of spatially inhomogeneous rarefied aerosol media with mixing using the lowest-order moments of the size distribution is generalized to particle coagulation. We show that when the problem is formulated in terms of moments, all of the solutions admitted by the stochastic coagulation equation lie within a narrow range whose boundaries can be determined by means of quadratic programming. We discuss the choice of an optimal solution within this range and compare the moment method with the results of our computations by the classical finite-difference method using a model of photochemical aerosols in Titan's atmosphere as an example. The moment method allows the efficiency of microphysical computations to be significantly increased by using precomputed low-dimension interpolation tables. It can be used to construct self-consistent models for the globular circulation of planetary atmospheres.  相似文献   

11.
We studied the acceleration conditions in the small but fairly energetic flare of May 21, 1984 at 1326 UT. The most pronounced aspect of this flare was a series of 13 microwave/X-ray spikes, each lasting for about 0.1 s. A previous study has shown that each of these was due to a series of successive sudden formations of small plasma knots of high-energy particles. Each of these knots lost its energy in about 50 ms. In the present study we show that these knots can originate by the process of X-type (3-D) flux tube coalescence. The predicted rise time (30 to 50 ms) and energy are in good agreement with the observationally derived parameters.  相似文献   

12.
Vandas  M.  Karlický  M. 《Solar physics》2000,197(1):85-99
It is commonly believed that solar type II bursts are caused by accelerated electrons at a shock front. Holman and Pesses (1983) suggested that electrons creating type II bursts are accelerated by the shock drift mechanism. Zlobec et al. (1993) dealt with a fine structure of type II bursts (herringbones) and suggested a qualitative model where electrons are accelerated by a nearly perpendicular wavy shock front. Using this idea, we developed a model of electron acceleration by such a wavy shock front. Electrons are accelerated by the drift mechanism in the shock layer. Under simplifying assumptions it is possible to obtain an analytical solution of electron motion in the wavy shock front. The calculations show that electrons are rarely reflected more than once at the wavy shock front and that their final energy is mostly 1–3 times the initial one. Their acceleration does not depend significantly on shock spatial parameters. In the present model all electrons are eventually transmitted downstream where they form two downstream beams. Resulting spectral and angular distributions of accelerated electrons are presented and the relevance of the model to the herringbone beams is discussed.  相似文献   

13.
In this paper we present results of two novel experimental methods to investigate the collisional behavior of individual macroscopic icy bodies. The experiments reported here were conducted in the microgravity environments of parabolic flights and the Bremen drop tower facility. Using a cryogenic parabolic-flight setup, we were able to capture 41 near-central collisions of 1.5-cm-sized ice spheres at relative velocities between 6 and . The analysis of the image sequences provides a uniform distribution of coefficients of restitution with a mean value of and values ranging from ε=0.06 to 0.84. Additionally, we designed a prototype drop-tower experiment for collisions within an ensemble of up to one hundred cm-sized projectiles and performed the first experiments with solid glass beads. We were able to statistically analyze the development of the kinetic energy of the entire system, which can be well explained by assuming a granular ‘fluid’ following Haff’s law with a constant coefficient of restitution of ε=0.64. We could also show that the setup is suitable for studying collisions at velocities of <5 mm s−1 appropriate for collisions between particles in Saturn’s dense main rings.  相似文献   

14.
Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with Hinode/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three “post-facto” methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the “post-facto” methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.  相似文献   

15.
Ultrarelativistic electrons must be being accelerated in the Crab Nebula to maintain the synchrotron spectrum. Sufficient power to maintain the synchrotron spectrum is supplied by an observed damping of compressional motions in the central region of the nebula (the wisps of Baade). An acceleration mechanism which involves compressional motions, the gyrorelaxation effect and the removal of pitch angle anisotropies by the generation of hydromagnetic waves is formulated and applied to a model of the Crab Nebula with acceleration confined to a central region. This can account for the power supplied to the electrons, the overall shape of the spectrum and allows acceleration up to energies corresponding to the synchrotron emission of hard X-rays. The acceleration process tends to flatten an initial energy spectrum.  相似文献   

16.
In this letter, we have assumed that the Universe is filled in tachyonic field with potential, which gives the acceleration of the Universe. For certain choice of potential, we have found the exact solutions of the field equations. We have shown the decaying nature of potential. From recently developed statefinder parameters, we have investigated the role of tachyonic field in different stages of the evolution of the Universe.  相似文献   

17.
将来最准确最稳定的钟——空间微重力钟   总被引:1,自引:0,他引:1  
介绍了目前最准确的原子钟,描述了将来最准确、最稳定的钟——空间微重力钟,以及高精度空间组合钟的预期性能,还介绍了一些正在实施的高精度空间钟计划。  相似文献   

18.
We have applied numerical simulations and modeling to the particle acceleration, magnetic field generation, and emission from relativistic shocks. We investigate the nonlinear stage of theWeibel instability and compare our simulations with the observed gamma-ray burst emission. In collisionless shocks, plasma waves and their associated instabilities (e.g., the Weibel, Buneman and other two-stream instabilities) are responsible for particle (electron, positron, and ion) acceleration and magnetic field generation. 3-D relativistic electromagnetic particle (REMP) simulations with three different electron-positron jet velocity distributions and also with an electron-ion plasma have been performed and show shock processes including spatial and temporal evolution of shocks in unmagnetized ambient plasmas. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-positron shocks are larger for smaller jet Lorentz factor. This comes from the fact that the growth time of the Weibel instability is proportional to the square of the jet Lorentz factor. We have performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which is assumed to be created by photon annihilation. Simulation results with this broad distribution show that the Weibel instability is excited continuously by the wide-range of jet Lorentz factor from lower to higher values. In all simulations the Weibel instability is responsible for generating and amplifying magnetic fields perpendicular to the jet propagation direction, and contributes to the electron’s (positron’s) transverse deflection behind the jet head. This small scale magnetic field structure contributes to the generation of “jitter” radiation from deflected electrons (positrons), which is different from synchrotron radiation in uniform magnetic fields. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks. The detailed studies of shock microscopic process evolution may provide some insights into early and later GRB afterglows.  相似文献   

19.
Acceleration mechanism of particles in the Type-I cometary plasma   总被引:1,自引:0,他引:1  
In the paper, the accelerated effect of ions has been discussed. The transversal magnetic disturbance is able to bring about the magnetic annihilation and merge in some cometary area. The non-steady-state reconnection process can transform the magnetic energy of some cometary area into the kinetic energy of plasma. In addition, the two stream instability caused by both solar wind and cometary plasmas exists in Type-I tail, it can also lead the paticles to be accelerated and heated in the plasma tail.  相似文献   

20.
Using steady, axisymmetric, ideal magnetohydrodynamics (MHD) we analyze relativistic outflows by means of examining the momentum equation along the flow and in the transfield direction. We argue that the asymptotic Lorentz factor is γ ~ μ ? σ M , and the asymptotic value of the Poynting-to-matter energy flux ratio—the so-called σ function—is given by σ/(1 + σ) ~ σ M /μ, where σ M is the Michel's magnetization parameter and μc 2 the total energy-to-mass flux ratio. We discuss how these values depend on the conditions near the origin of the flow. By employing self-similar solutions we verify the above result, and show that a Poynting-dominated flow near the source reaches equipartition between Poynting and matter energy fluxes, or even becomes matter-dominated, depending on the value of σ M /μ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号