首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, Ras Sudr (the delta of Wadi Sudr) area received a great amount of attention due to different development expansion activities directed towards this area. Although Quaternary aquifer is the most prospective aquifer in Ras Sudr area, it has not yet completely evaluated. The present work deals with the simulation of the Quaternary groundwater system using a three-dimensional groundwater flow model. MODFLOW code was applied for designing the model of the Ras Sudr area. This is to recognize the groundwater potential as well as exploitation plan of the most prospective aquifer in the area. The objectives were to determine the hydraulic parameters of the Quaternary aquifer, to estimate the recharge amount to the aquifer, and to determine the hydrochemistry of groundwater in the aquifer. During this work, available data has been collected and some field investigation has been carried out. Groundwater flow model has been simulated using pilot points’ method. SEAWAT has been also applied to simulate the variable-density flow and sea water intrusion from the west. It can be concluded that: (1) the direction of groundwater flow is from the east to the west, (2) the aquifer system attains a small range of log-transformed hydraulic conductivity. It ranges between 3.05 and 3.35 m/day, (3) groundwater would be exploited by about 6.4 × 106 m3/year, (4) the estimated recharge accounts for 3 × 106 m3/year, (5) an estimated subsurface flow from the east accounts for 2.7 × 106 m3/year, (6) the increase of total dissolved solids (TDS) most likely due to dilution of salts along the movement way of groundwater from recharge area to discharge area in addition to a contribution of sea water intrusion from the west. Moreover, it is worth to note that a part of TDS increase might be through up coning from underlying more saline Miocene sediments. It is recommended that: (1) any plan for increasing groundwater abstraction is unaffordable, (2) reliable estimates of groundwater abstraction should be done and (3) automatic well control system should be made.  相似文献   

2.
The Maknassy basin in central Tunisia receives insignificant precipitation (207 mm/y), but the hydrological system retain very small quantities of water due to the steep topography and surface water resource partially mobilised witch is evacuated toward the basin outlet. However, the Maknassy plain support agriculture based on ground water irrigation with increasing water demand last decades. These developments have boosted agricultural productivity in the region. While these problems are mainly due to poor surface water management strategies in the region, the groundwater resources in this basin should be properly assessed and suitable measures taken for uniform surface water mobilization. As a first step in this direction, groundwater resources have been assessed. Regional specific yield (0.017) and groundwater recharge have been estimated on the basis of water table fluctuation method. Groundwater recharge amounting to 61.5 106 m3 in a year takes place in the region through infiltration of rainwater (48.1*106 m3 for phreatic aquifer and 13.4*106 m3 for the deep one), and recharge due to the infiltration in the Leben quady bed (1.57*106 m3). Recharge to deeper aquifers has been estimated at 0.1*106 m3 during dry seasons. Assuming that at least 40 % (102.61*106 m3) of the total precipitation water (256.64*106 m3) makes the runoff water, this important resource can be mobilized in order to increase groundwater recharge. Subject to an arid climate, such region requires an integrated water resource management. It permits to keep aquiferous system equilibrium and participate to the sustainable development which integrates natural resource management.  相似文献   

3.
Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity?=?42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.  相似文献   

4.
The main target of this research paper was to the hydrogeological assessment of the groundwater resources to irrigate 600 ha of irrigable agricultural lands, distributed along the Dead Sea–Aqaba Highway in Umm, Methla, Wadi Musa, Qa’ Saideen and Rahma, southern Jordan. Therefore, a comprehensive groundwater study was commenced by drilling eight new wells which can be used to supply irrigable areas with the existing groundwater that would be enriched by the yield of three proposed recharge dams on Wadi Musa, Wadi Abu-Burqa, and Wadi Rahma. The evaluation of the pumping test data of the drilled was carried out using the standard methods of pumping test interpretation. This was based on the available water table measurements at well locations and knowledge of water flow in the general. The sustainable yield of each well was calculated based on the pumping test parameters. The obtained results indicate that pumping out of Beer Mathkor wells should not exceed 1,100 m3/day in the case of continuous pumping and 8,700 m3/day in the case of intermittent pumping. Since the water table did not significantly change with small changes in pumping (it took eightfolds of magnitude increase in pumping from approximately 1,100 to 8,700 m3/day to show a significant drop in the water table equivalent to about 5.5 MCM per year from the aquifer.  相似文献   

5.
The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86?×?106 to 209.42?×?106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.  相似文献   

6.
Shallow groundwater represents the main source for water supply in Kabul, Afghanistan. Detailed information on the hydrogeology of the Kabul Basin is therefore needed to improve the current supply situation and to develop a sustainable framework for future groundwater use. The basin is situated at the intersection of three major fault systems of partially translational and extensional character. It comprises three interconnected aquifers, 20–70 m thick, consisting of coarse sandy to gravely detritus originating from the surrounding mountains. The aquifers were deposited by three rivers flowing through the basin. The coarse aquifer material implies a high permeability. Deeper parts are affected by cementation of pore spaces, resulting in formation of semi-diagenetic conglomerates, causing decreased well yields. Usually the aquifers are covered by low-permeability loess which acts as an important protection layer. The main groundwater recharge occurs after the snowmelt from direct infiltration from the rivers. The steadily rising population is estimated to consume 30–40 million m3 groundwater per year which is contrasted by an estimated recharge of 20–45 million m3/a in wet years. The 2000–2005 drought has prevented significant recharge resulting in intense overexploitation indicated by falling groundwater levels.  相似文献   

7.
Groundwater resource potential is the nation’s primary freshwater reserve and accounts for a large portion of potential future water supply. This study focused on quantifying the groundwater resource potential of the Upper Gilgel Gibe watershed using the water balance method. This study began by defining the project area’s boundary, reviewing previous works, and collecting valuable primary and secondary data. The analysis and interpretation of data were supported by the application of different software like ArcGIS 10.4.1. Soil water characteristics of SPAW (Soil-plant-air-water) computer model, base flow index (BFI+3.0), and the water balance model. Estimation of the areal depth of precipitation and actual evapotranspiration was carried out through the use of the isohyetal method and the water balance model and found to be 1 664.5 mm/a and 911.6 mm/a, respectively. A total water volume of 875 829 800 m3/a is estimated to recharge the aquifer system. The present annual groundwater abstraction is estimated as 10 150 000 m3/a. The estimated specific yield, exploitable groundwater reserve, and safe yield of the catchment are 5.9%, 520 557 000 m3/a, and 522 768 349 m3/a respectively. The total groundwater abstraction is much less than the recharge and the safe yield of the aquifer. The results show that there is a sufficient amount of groundwater in the study area, and the groundwater resources of the area are considered underdeveloped.  相似文献   

8.
The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75?×?106 m3. The annual recharge through the infiltration of flood water is about 1.93?×?106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33?×?105 m3/year. The total annual groundwater recharge is 2.06?×?106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29?×?105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38?×?106 m3/year on average. The total annual groundwater discharge is about 4.7?×?106 m3. A deficit of 2.6?×?106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.  相似文献   

9.
The dynamics of artificial recharge of winter surface flows coupled with increased summer groundwater use for irrigation in the Sokh aquifer (Central Asia) have been investigated. Water release patterns from the giant Toktogul reservoir have changed, as priority is now given to hydropower generation in winter in Kyrgyzstan. Winter flows have increased and summer releases have declined, but the Syr Darya River cannot pass these larger winter flows and the excess is diverted to a natural depression, creating a 40?×?109m3 lake. A water balance study of all 18 aquifers feeding the Fergana Valley indicated the feasibility of winter groundwater recharge in storage created by summer abstraction. This modeling study examines the dynamics of the process in one aquifer over a 5-year period, with four scenarios: the current situation; increased groundwater abstraction of around 625 million (M) m3/year; groundwater abstraction with an artificial recharge of 144 Mm3/year, equivalent to the volume available in low flow years in the Sokh River; and with a larger artificial recharge of 268 Mm3/year, corresponding to high flow availability. Summer surface irrigation diversions can be reduced by up to 350 Mm3 and water table levels can be lowered.  相似文献   

10.
The Krishni–Yamuna interstream area is a micro-watershed in the Central Ganga Plain and a highly fertile track of Western Uttar Pradesh. The Sugarcane and wheat are the major crops of the area. Aquifers of Quaternary age form the major source of Irrigation and municipal water supplies. A detailed hydrogeological investigation was carried out in the study area with an objective to assess aquifer framework, groundwater quality and its resource potential. The hydrogeological cross section reveals occurrence of alternate layers of clay and sand. Aquifer broadly behaves as a single bodied aquifer down to the depth of 100 m bgl (metre below ground level) as the clay layers laterally pinch out. The depth to water in the area varies between 5 and 16.5 m bgl. The general groundwater flow direction is from NE to SW with few local variations. An attempt has been made to evaluate groundwater resources of the area. The water budget method focuses on the various components contributing to groundwater flow and groundwater storage changes. Changes in ground water storage can be attributed to rainfall recharge, irrigation return flow and ground water inflow to the basin minus baseflow (ground water discharge to streams or springs), evapotranspiration from ground water, pumping and ground water outflow from the basin. The recharge is obtained in the study area using Water table fluctuation and Tritium methods. The results of water balance study show that the total recharge in to the interstream region is of the order of 185.25 million m3 and discharge from the study area is of the order of 203.24 million m3, leaving a deficit balance of −17.99 million m3. Therefore, the present status of groundwater development in the present study area has acquired the declining trend. Thus, the hydrogeological analysis and water balance studies shows that the groundwater development has attained a critical state in the region.  相似文献   

11.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

12.
A significant component of domestic demand for water of urban areas located in the Gangetic plains is met by heavy pumping of groundwater. The present study is focused on the Patna municipal area, inhabited by 17 million people and spanning over 134 km2, where entire urban water demand is catered from pumping by wells of various capacities and designs. The present study examines the nature of the aquifer system within the urban area, the temporal changes in the water/piezometric level and the recharge mechanism of the deeper aquifers. The aquifer system is made up of medium-to-coarse unconsolidated sand, lying under a ~40-m-thick predominantly argillaceous unit holding 8- to 13-m-thick localised sand layers and continues up to 220 m below ground. Groundwater occurs under semi-confined condition, with transmissivity of aquifers in 5,500–9,200 m2 day?1 range. Hydraulic head of the deeper aquifer remains in 9–19 m range below ground, in contrast to 1–9 m range of that of the upper aquitard zone. The estimated annual groundwater extraction from the deeper aquifer is ~212.0 million m3, which has created a decline of 3.9 m in the piezometric level of the deeper aquifer during the past 30 years. Unregulated construction of deep tube wells with mushrooming of apartment culture may further exacerbate the problem. The sand layers within the aquitard zone are experiencing an annual extraction of 14.5 million m3 and have exhibited stable water level trend for past one and half decades. This unit is recharged from monsoon rainfall, besides contribution from water supply pipe line leakage and seepage from unlined storm water drains.  相似文献   

13.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

14.
Groundwater is the most important source of water supply in Sidi Bouzid plain located in central Tunisia. Proper understanding of the geochemical evolution of groundwater is important for sustainable development of water resources in this region. A hydrogeochemical survey was conducted on the Mio–Plio–Quaternary aquifer system using stable isotopes, radiocarbon, tritium and major elements, in order to evaluate the groundwater chemistry patterns and the main mineralization processes occurring in this system. The chemical data indicate that dissolution of evaporate minerals and evaporation are the main processes controlling groundwater mineralization. The isotopic data show that groundwater in the study area is a mixture of recent shallow waters located upstream and along Wadi Al Fakka bed and paleowaters located towards plain limits and discharge areas. Low 3H and 14C contents are observed in major part of the plain indicating that recharge of the aquifer occurs mainly through direct infiltration at Wadi Al Fakka while there is no evidence of significant recharge in major part of the plain and mountains piedmonts.  相似文献   

15.
A methodological procedure is proposed for determining the renewal period (RP), which expresses the ratio of total storage to recharge of carbonate aquifers, and it was applied to the overexploited moderate-size Becerrero carbonate aquifer (southern Spain). To this end, geological and subsurface data—time domain electromagnetic (TEM) soundings and borehole logs—were integrated to construct a three-dimensional (3D) geological model of the aquifer. The interconnected porosity was estimated by analyzing 73 rock samples. The resulting 3D geometrical model makes it possible to quantify the fractions of the aquifer having a confined or unconfined behaviour. Based on the total storage capacity (179?·?106–514?·?106 m3) and available aquifer recharge estimation (4.8?·?106–6.4?·?106 m3/year), an RP between 37 and 106 years is obtained. In view of the RP, an exploitation rate slightly lower than the average recharge of the system is recommended, so that the piezometric level will be stable but below the discharge head that is produced through the springs in natural conditions. The proposed methodology to obtain an aquifer RP and the management strategies designed accordingly are of broad interest, especially for carbonate aquifers, which are abundant in arid and semiarid regions.  相似文献   

16.
The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater recharge estimation methods and results were compared: chloride mass balance method (19–62 mm/year); water-table fluctuation method (2–50 mm/year); Darcian flownet computations (16–28 mm/year); 14C age dating (22–25 mm/year); and groundwater modeling (11–26 mm/year). The flownet computational and modeling methods provided better estimates for aerial recharge than the other methods. Based on groundwater modeling, a final estimate for recharge (from precipitation) on the order of 15–20 mm/year is believed to be realistic, assuming that part of the recharge water transpires from the water table by deep-rooted vegetation. This recharge estimate (2.7–3.6% of the annual precipitation of 555 mm/year) compares well with the results of other researchers. The advantages/disadvantages of each recharge method in terms of ease of application, accuracy, and costs are discussed. The groundwater model was also used to quantify the total recharge of the Nyamandhlovu aquifer system (20?×?106–25?×?106 m3/year). Groundwater abstractions exceeding 17?×?106 m3/year could cause ecological damage, affecting, for instance, the deep-rooted vegetation in the area.  相似文献   

17.
In the Meskala-Kourimat area, the Bouabout Syncline aquifer system, intersected by the Igrounzar Wadi, feeds most of the karstic sources of the region. This aquifer is contained within Cenomanian and Turonian limestones and dolomitic limestones. The base of the system corresponds to the lower Cenomanian grey clays, and the top to the Senonian white marls. Hydrodynamic studies of various springs shows that each water source is different from the other, indicating a heterogeneous underground reservoir belonging to a complex karst system. The springs waters show a large chemical variability in space and time. These waters are a mixture of chloride, sulphate, Na and Mg. High Mg contents of some springs result from dissolution of evaporite, confirmed by low Ca/Mg ratios. The total dissolved solids (TDS) in spring water increases from upstream to downstream, probably as a response to residency time, but also due to interaction with Cenomanian evaporites. However, the springs are good for drinking water, as well as for irrigation. The monthly survey of selected springs indicated a large chemical variability but with little or no correlation between discharge and TDS.Stable isotope data (18O) suggests that the altitude of the recharge area, for this aquifer system, is 1200 m. The 18O gradient versus altitude, established on springs whose recharge areas are well known is, −0.25% versus SMOW/100 m. When compared with the ‘Meteoric Water Line’ established on worldwide spring water whose recharge areas are well known, the Essaouira Basin shows rain recharge without any significant evaporation.  相似文献   

18.
Groundwater is a major source of water for agricultural and domestic requirements in western Uttar Pradesh. Due to increasing agricultural requirements the abstraction of groundwater has increased manifold in the last two-to-three decades. The quaternary alluvium hosts the aquifer in the region. The study area forms a part of Yamuna-Krishni interfluve. Although the area hosts potential aquifers these have been adversely affected by poor management. For effective groundwater management of a basin it is essential that a careful water balance study should be carried out. Keeping this in mind groundwater flow modelling was attempted to simulate the behaviour of the flow system and evaluate the water balance. The groundwater flow modelling was carried out. The horizontal flows, seepage losses from unlined canals, recharge from rainfall and irrigation return flows were applied using different boundary packages available in Visual MODFLOW, Pro 4.1. The river-aquifer interaction was simulated using the river boundary package. Hydraulic conductivity values were applied to specific zones and these ranged from 9.8 to 26.6m/day. Recharge due to rainfall and irrigation returns were assigned to respective zones. Pumping rates of 500m3/day, 1000m3/day, 1500m3/day, 2000m3/day and 2500m3/day were applied to appropriate areas of the model to simulate areas of stress. The zone budget shows a water balance deficit for the period June 2006 to June 2007. The total recharge to the study area is 160.21 million m3 (Mcum). The groundwater draft through pumping is of the order of 233.56 Mcum, thus leaving a deficit balance of −73.35 Mcum. The sensitivity of the model to input parameters was tested by varying the parameters of interest over a range of values, monitoring the response of the model and determining the root mean square error of the simulated groundwater heads to the measured heads. These analyses showed that the model is most sensitive to hydraulic conductivity and recharge parameters. Three scenarios were considered to predict aquifer responses under varied conditions of groundwater bstraction.  相似文献   

19.
Induced recharge at new dam sites—Sana’a Basin, Yemen   总被引:2,自引:0,他引:2  
In approaching the task of developing recharge estimates for dam sites, several constraints are apparent, including the scarcity of site-specific data for the selected new sites and the availability of simple yet robust analysis techniques. Combined, these constraints require an approach which involves best use of available data, adoption of relatively simple analytical approximations of reality, and the adoption of several key assumptions. In arid country with limited resources, two simple techniques have been used for recharge estimation: (1) a simple water balance model in spreadsheet and (2) a more refined Darcian approach involving an analytical approximation of a flow-net solution. By applying the two models at three new dam sites, the amount of recharge rates calculated over the period 2007–2026 was close. This is because, despite Darcian approach that should have affected the recharge rate as other parameters were introduced in the calculation of q t , e.g., groundwater table mound, reservoir water height, etc., the results show general agreement between the two methods which seem to validate the assumptions made in both methods. A general conclusion of this comparison is that the hydraulic conductivity (K) is the main determining factor in recharge calculations in these situations. The water balance model was used to estimate recharge at Wadi Bahaman, under gravity and cascade dams’ scenarios. Using gravity dam at Wadi Bahaman for groundwater recharge proved not suitable based on the relatively small predicted runoff from a small catchment area and geological concerns in the abutment areas. Instead, a series of three low check dams (2 to 4 m high) was proposed. These check dams will slow down the runoff flow, form small reservoirs, and enhance recharge along the valley, without requiring expensive foundations. Estimated groundwater recharge under cascade dams (141,407 m3/year) is greater than recharge estimated for gravity dam (103,853 m3/year) by at least 36%.  相似文献   

20.
Managed aquifer recharge (MAR) is necessary for water resources management in arid and semiarid regions. Infiltration rate is often a decisive limiting factor in site selection for MAR. In order to avoid scale effects in the application of infiltration rate parameters, the largest in situ infiltration test in China was undertaken between August 19 and August 30, 2009 to measure the infiltration rate of the field selected for MAR in Shijiazhuang City, China. The in situ test lasted for 10 days, and about 1.82 × 107 m3 of water was introduced into the infiltration field. Groundwater level variations were monitored during the test. Monitoring showed that the infiltration rate of surface water was 1.5 m/day, which means that about 10–15 × 108 m3/a of water could be injected into the target aquifer. Also, groundwater level variations showed that the northern part of the infiltration field had a higher infiltration rate, as predicted, and the test result supplied a sound foundation for validation of the groundwater numerical simulation, which will be of benefit for future predictions of the response of the groundwater level to artificial recharge engineering. Finally, an artificial recharge plan was proposed based on the infiltration test results and the water source conditions, which would be useful for the development of MAR programs and management of local water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号