首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用湍流通量相等原理和ECMWF的总体湍流输送系数参数化方案,研究了气候数值模式中非均匀地表类型的有效粗糙度计算问题。结果表明,当存在两种地表类型且粗糙变率为2.3时,有效粗糙度比通常采用的对数加权平均值大40%左右,相应的总体湍流输送系数大16%左右,光滑地表类型和粗糙地表类型所占面积百分比分别为60%和40%时,有效粗糙度及相应的总体湍流输送系数和相应的对数加权平均值之差最大,并且有效粗糙度对大气层结不敏感,因而在气候模式中有实用价值。  相似文献   

2.
We present a numerical simulation of drag partition over rough surfaces. A computational fluid dynamics model is applied with high resolution to simulatingturbulent flows over arrays of roughness elements positioned on asmooth surface. The skin drag on the surface and the pressure drag on the roughnesselements are computed. The simulated drag partition compares well with wind-tunnelmeasurements and theoretical estimates for similar rough surfaces. This confirms that the computational approach offers an alternative to wind-tunnel and field experiments in studying drag and drag partition. The model is then applied to studying drag partition over rough surfaces with various roughness configurations. It is shown that drag partition depends not only on the magnitude of the roughness frontal area but also on the sizes and arrangement of roughness elements, because (1) the pressure drag coefficient is sensitive to roughness-element dimensions and (2) the arragement of roughness elements lead to different interferences of turbulent wakes. The impact ofthe latter factor is not insignificant.  相似文献   

3.
Field And Wind-Tunnel Studies Of Aerodynamic Roughness Length   总被引:3,自引:0,他引:3  
The aerodynamic roughness length (z0) values of three Gobi desert surfaces were obtained by measurement of the boundary-layer wind profile in the field. To clarify the factors affecting the Gobi surface aerodynamic roughness length, a wind-tunnel experiment was conducted. The wind-tunnel simulation shows that z0 values increase with increasingsize and coverage of roughness elements. Especially, the shape and height of roughnesselements are more important than other factors in affecting roughness length. The roughness length increases with decreasing values of the geometric parameter (the ratio of element horizontal surface area to height, ) of roughness elements. But at a higher free stream velocity, the height is more important than the shape in affecting roughness length.  相似文献   

4.
半干旱区榆中地表粗糙度年变化及影响机理   总被引:1,自引:0,他引:1       下载免费PDF全文
姚彤  张强  尹晗 《应用气象学报》2014,25(4):454-462
利用2006年6月—2010年12月兰州大学半干旱气候与环境观测站 (SACOL) 观测资料,分析了黄土高原自然植被下垫面榆中地表粗糙度时间变化特征,考虑到地形、植被物理特征以及降水和热力条件的影响,分析了东南风向和西北风向粗糙度年变化规律及其影响机理,并分别给出这两个风向归一化粗糙度与时间的拟合关系式。研究发现:对于非均一下垫面,由于地形起伏和下垫面植被差别造成的不同风向粗糙度差异显著。选取东南风向和西北风向,这两个风向的地表粗糙度无论是量级还是年变化特征都有很大差别,且由于地形和植被的差别,东南风向粗糙度年变化趋势与稳定度年变化趋势一致,粗糙度与稳定度存在一定相关关系,而西北风向粗糙度年变化趋势与降水量年变化趋势一致,粗糙度与降水量相关性较好。  相似文献   

5.
Sensitivity experiment is an important method to study the effect on regional climate due toseasonal variation of land surface parameters.Using China Regional Climate Model(CRCM)nested in CCM1.we first simulate Chinese regional climate,then two numerical sensitivityexperiments on the effect of vegetation and roughness length are made.The results show that:(1)If the vegetation is replaced with the monthly data of 1997.precipitation and land-surfacetemperature are both changed clearly,precipitation decreases and land surface temperatureincreases,but there is no regional correspondence between these changes.And the results aremuch better than the results when climate average vegetation was used in the CRCM.(2)If theroughness length is replaced with the monthly data of 1997,there is significant change on landsurface temperature,and there is very good regional correspondence between these changes.Butthe effect on precipitation is very small.  相似文献   

6.
We develop a parameterisation for the effective roughness length of terrain that consists of a repeating sequence of patches, in which each patch is composed of strips of two roughness types. A numerical model with second-order closure in the turbulent stress is developed and used to show that: (i) the normalised Reynolds stress develops as a self-similar profile; (ii) the mixing-length parameterisation is a good first-order approximation to the Reynolds stress. These findings are used to characterise the blending layer, where the stress adjusts smoothly from its local surface value to its effective value aloft. Previous studies have assumed that this adjustment occurs abruptly at a single level, often called the blending height. The blending layer is shown to be characterised by height scales that arise naturally in linear models of surface layer flow over roughness changes, and calculations with the numerical model show that these height scales remain appropriate in the nonlinear regime. This concept of the blending layer allows the development of a new parameterisation of the effective roughness length, which gives values for the effective roughness length that are shown to compare well with both atmospheric measurements and values determined from the second-order model.  相似文献   

7.
8.
绿洲-沙漠复合地表条件下的局地和有效粗糙度   总被引:11,自引:0,他引:11  
地表空气动力学粗糙度是研究水平非均匀条件下陆面过程的基础,文中对黑河试验区各不同下垫面上地表空气动力学粗糙度进行了估算和分析,分别得到了地表空气动力学粗糙度z0m的有效值和局地值,发现各不同典型下垫面的局地z0m值明显不同,尤其在有作物存在时,绿洲的局地z0m值比沙漠、戈壁的值明显要大;而对同一测站,有效空气动力学粗糙度比局地空气动力学粗糙度值明显要大,运用应力分解理论对这种差异进行了解释,认为有效空气动力学粗糙度与复合表面的总应力有关,其代表了较大水平尺度内的表面和较高障碍物的综合作用,当涉及对陆表通量参数化问题时,必须首先确定水平尺度及相应的地表粗糙度参数  相似文献   

9.
Aerodynamic roughness length (z0m is a key factor in surface flux estimations with remote sensing algorithms and/or land surface models. This paper calculates z0m over several land surfaces, with 3 years of experimental data from Xiaotangshan. The results show that z0m is direction-dependent, mainly due to the heterogeneity of the size and spatial distribution of the roughness elements inside the source area along different wind directions. Furthermore, a heuristic parameterization of the aerodynamic roughness length for heterogeneous surfaces is proposed. Individual z0m over each surface component (patch) is calculated firstly with the characteristic parameters of the roughness elements (vegetation height, leaf area index, etc.), then z0m over the whole experimental field is aggregated, using the footprint weighting method.  相似文献   

10.
1.IntroductionWindprofilewiththerelevantlow--leveljet(LLJ)isoneofthemostimportantfactorsthatcharacterizethestructureoftheatmosphericboundarylayer.TheLLJswerereportedinEurope(SladkovicandKanter,1977;Krausetal.,1985),Africa(Anderson,1976;Hart,etal.,1978),NorthAmerica(Stull,1988;Arrittetal.,1997),Australia(MalcherandKraus,1983;Garratt,1985)andEastAsia(Wangetal.,1996;ChenandHsu,1997).DifferentinvestigatorsuseddifferentcriteriaforidentifyingtheLLJs.SomerequiredwindspeedgreaterthanaParti…  相似文献   

11.

A model for the roughness length and its correlation with the roughness shear stress on organized rough walls of varying geometry are presented and verified. The roughness length is nondimensionalized by the characteristic roughness length and is expressed as a function of roughness density with a wake-interference parameter. The dimensionless roughness length is independent of Reynolds number. When the model is applied to the whole range of roughness densities, the rough walls can be smooth, transitionally rough, and fully rough. A large number of data from classical experiments and recent simulations are analyzed to evaluate the proposed correlations, which are found to be consistent with the analyzed datasets. The proposed expression for the dimensionless roughness length and the expression for the dimensionless roughness shear stress, proposed previously by the author (Boundary-Layer Meteorology, 2020, Vol. 174, 393–410), are found to be identical in form. Numerous extant measurements of the two roughness parameters can be reproduced when the wake-interference parameters in the two models are treated as identical. The parameters of the roughness-length model are closely related to the geometry of the roughness elements. Different types of roughness elements can be distinguished by the values of the parameters. These results provide the foundation for constructing the unified roughness model for organized rough walls of varying geometry.

  相似文献   

12.
The mean flow profile within and above a tall canopy is well known to violate the standard boundary-layer flux–gradient relationships. Here we present a theory for the flow profile that is comprised of a canopy model coupled to a modified surface-layer model. The coupling between the two components and the modifications to the surface-layer profiles are formulated through the mixing layer analogy for the flow at a canopy top. This analogy provides an additional length scale—the vorticity thickness—upon which the flow just above the canopy, within the so-called roughness sublayer, depends. A natural form for the vertical profiles within the roughness sublayer follows that overcomes problems with many earlier forms in the literature. Predictions of the mean flow profiles are shown to match observations over a range of canopy types and stabilities. The unified theory predicts that key parameters, such as the displacement height and roughness length, have a significant dependence on the boundary-layer stability. Assuming one of these parameters a priori leads to the incorrect variation with stability of the others and incorrect predictions of the mean wind speed profile. The roughness sublayer has a greater impact on the mean wind speed in stable than unstable conditions. The presence of a roughness sublayer also allows the surface to exert a greater drag on the boundary layer for an equivalent value of the near-surface wind speed than would otherwise occur. This characteristic would alter predictions of the evolution of the boundary layer and surface states if included within numerical weather prediction models.  相似文献   

13.
Flow in the urban boundary layer is strongly influenced by the surface roughness, which is composed principally of isolated buildings or groups of buildings. Previous research has shown that the flow regime depends on the characteristic height of these obstacles (H), and the spacing between them (W). In reality, the urban boundary layer contains roughness elements with a wide range of length scales; in many practical situations these can be classified into large-scale roughness—buildings, or groups of buildings—and small-scale roughness, such as street furniture and elements on the façades and roofs. It is important to understand how the small-scale roughness might modify mass and momentum transfer in the urban boundary layer, but relatively little information is available concerning the potential interaction between large- and small-scale roughness elements in the different flow regimes. This problem has been studied using wind-tunnel experiments, by measuring vertical velocity profiles over a two-dimensional obstacle array, adding small-scale roughness elements to the top of larger parallel square bars. The experiments were performed for different cavity aspect ratios: the results show that the small-scale roughness increases the turbulence intensities and the momentum transfer when the large-scale obstacles are closely packed (H/W > 1) but it has very little effect for more widely-spaced obstacles (H/W < 1).  相似文献   

14.
An experimental study of the initial flow field downstream of a step change in surface roughness is presented. The roughness length of the downstream surface was approximately tenfold that of the upstream roughness and, unlike all previous studies, attention was concentrated on the roughness sublayer region beneath the inertial (log-law) region. The experiments were conducted at a boundary layer Reynolds number of about 6 × 104 (based on layer thickness andfree-stream velocity) and around a longitudinal location where the (downstream) roughness length, zo2, was about 1% of the boundary-layer thickness atthe roughness change point.The thickness of the roughness sublayer was found for the two roughness. It was observed that the vertical profiles of mean velocity and turbulence characteristics started to show similarity after about 160z02 downstream of the roughness change. The presence of a shear stress overshoot is shown to depend strongly on the precise location (with respect to the roughness elements) at which the measurements are made and the thickness of the equilibrium layer is shown to be very sensitive to the way it is defined. It is demonstrated that the growing equilibrium layer has first to encompass the roughness sublayer before any thickness of inertial sublayer can be developed. It follows that, in somepractical cases, like flows across some urban environments, the latter(log-law) region may never exist at all.  相似文献   

15.
Surface-based and aircraft measured fluxes over the heterogeneous surface in HAPEX-MOBILHY are analyzed for the ten flight days when cloud cover above the boundary layer was minimal. The fair-weather climatology of the spatial variation of surface fluxes is estimated to provide an assessment of the generality of previous case studies appearing in the literature. For the 10-day averages, greater heating over the forest generates a forest breeze which leads to rising motion and a modest increase of boundary-layer cloud cover at the forest edge. The exchange coefficients and effective roughness lengths are computed for local averages (15 km scale) and for regional averages (100 km scale) intended to represent a range of grid sizes in numerical models of the atmosphere. The effective roughness length for momentum over the mixed agricultural region for both scales is on the order of 1 m, apparently due to bluff roughness effects associated with scattered trees, edges of small woods and other obstacles. This roughness length value is an order of magnitude larger than values used in numerical models for the same region, which are based on the dominant vegetation type. The spatially varying effective roughness length for heat is computed for use in those models which use surface radiation temperature to estimate surface heat flux. The effective roughness lengths for heat are found to be smaller than those typically used in numerical models of the atmosphere.  相似文献   

16.
Shear-stress partitioning is investigated for one type of flexible plant for very small values of the basal-to-frontal area ratio σ (0.001–0.007). The plant model is made of plastic with irregular structures, which are different from previously investigated rigid regular or flexible roughness elements with larger σ values. The distribution of the surface shear stress and the total shear stress at four plant densities with five plant heights are measured in a wind tunnel using Irwin-type sensors and a load cell, respectively. The wind-tunnel experiments prove that, for these flexible plants, the plant height and lateral cover usually decrease with increasing friction velocity, especially for taller plants, while the plant coverage generally increases. However, these characteristics may be inconsistent with flexible roughness elements with very large σ values (and usually very low aspect ratios) because these elements are less flexible. The present flexible plants generally result in lower shear-stress ratios compared with other roughness elements, which is also proven by the higher values of β (the ratio of the drag coefficient of an isolated roughness element to that of the bare surface) and a constant m (accounting for the difference between the average and peak surface shear stresses) from the present experiments (β?=?184–210 and m?=?0.68–0.79). The peak mean stress ratio of the present flexible plants is not a constant (1.07–1.54) because it is affected by the lateral cover, which is different from previous studies that consider the ratio to be constant without regard for the lateral cover.  相似文献   

17.
We tested three atmospheric surface-layer parameterization schemes (Mellor-Yamadalevel 2, Paulson, and modified Louis), both ina 1-D mode in the new NCEP land-surface scheme against long-term FIFE and HAPEX observations, and in a coupled 3-D mode withthe NCEP mesoscale Eta model. The differences inthese three schemes and the resulting surface exchange coefficients do not, in general, lead to significant differences in model simulated surface fluxes, skin temperature, andprecipitation, provided the same treatment of roughness length for heat is employed.Rather, the model is more sensitive to the choice of the roughness length for heat. To assess the latter, we also tested two approaches to specifythe roughness length for heat: 1) assuming the roughness length for heat is a fixed ratio of the roughness length for momentum, and 2) relating this ratio to the roughness Reynolds number as proposed by Zilitinkevich.Our 1-D column model sensitivity tests suggested that the Zilitinkevich approach can improve the surface heat fluxand skin temperature simulations. A long-term test with the NCEP mesoscaleEta model indicated that this approach can also reduce forecast precipitation bias. Based on these simulations, in January 1996 we operationally implemented the Paulsonscheme with the new land-surface scheme of the NCEP Eta model, along with the Zilitinkevich formulation to specify the roughness length for heat.  相似文献   

18.
In numerical weather prediction, climate and hydrologicalmodelling, the grid cell size is typically larger than the horizontal length scales of variations in aerodynamicroughness, surface temperature and surface humidity. These local land cover variations give rise to sub-gridscale surface flux differences. Especially the roughness variations can give a significantly differentvalue between the equilibrium roughness in each of the patches as compared to the aggregated roughness value,the so-called effective roughness, for the grid cell. The effective roughness is a quantity that secures thephysics to be well-described in any large-scale model. A method of aggregating the roughness step changesin arbitrary real terrain has been applied in flat terrain (Denmark) where sub-grid scale vegetation-drivenroughness variations are a dominant characteristic of the landscape. The aggregation model is a physicaltwo-dimensional atmospheric flow model in the horizontal domain based on a linearized version of theNavier Stoke equation. The equations are solved by the Fast Fourier Transformation technique, hence the codeis very fast. The new effective roughness maps have been used in the HIgh Resolution Limited Area Model(HIRLAM) weather forecasting model and the weather prediction results are compared for a number of casesto synoptic and other observations with improved agreement above the predictions based on currentstandard input. Typical seasonal springtime bias on forecasted winds over land of +0.5 m s-1 and-0.2 m s-1 in coastal areas is reduced by use of the effective roughness maps.  相似文献   

19.
The influence of surface roughness on the dispersion of a passive scalar in a rough wall turbulent boundary layer has been studied using wind-tunnel experiments. The surface roughness was varied using different sizes of roughness elements, and different spacings between the elements. Vertical profiles of average concentration were measured at different distances downwind of the source, and the vertical spread of the plume was computed by fitting a double Gaussian profile to the data. An estimate of the integral length scale is derived from the turbulence characteristics of the boundary layer and is then used to scale the measured values of plume spread. This scaling reduces the variability in the data, confirming the validity of the model for the Lagrangian integral time scale, but does not remove it entirely. The scaled plume spreading shows significant differences from predictions of theoretical models both in the near and in the far field. In the region immediately downwind of the source this is due to the influence of the wake of the injector for which we have developed a simple model. In the far field we explain that the differences are mainly due to the absence of large-scale motions. Finally, further downwind of the source the scaled values of plume spread fall into two distinct groups. It is suggested that the difference between the two groups may be related to the lack of dynamical similarity between the boundary-layer flows for varying surface roughness or to biased estimates of the plume spread.  相似文献   

20.
Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (τ) acting on the surfaces, the surface shear stress on the ground between the elements (τS) and the drag force on the elements for each roughness array. The measurements indicated that τS quickly reduced near the leading edge of the roughness compared with τ, and a τS minimum occurs at a normalized distance (x/h, where h is element height) of (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average τS : τ values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号