首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Abstract Granitoids are widely distributed in the Ryoke belt and have been divided into four main igneous stages based on their field setting. In this paper, we present Rb–Sr isochron ages for the younger Ryoke granitoids (second stage to fourth stage) in the Kinki district. The Yagyu granite (second stage) gave a Rb–Sr whole‐rock isochron age of 74.6 ± 10.9 Ma with an initial 87Sr/86Sr ratio of 0.70938 ± 0.00016, and a Rb–Sr mineral isochron age of 71.8 ± 0.1 Ma. The Narukawa granite (second stage) yielded a Rb–Sr mineral isochron age of 79.5 ± 0.4 Ma. A Rb–Sr whole‐rock isochron age of 78.3 ± 3.0 Ma with an initial 87Sr/86Sr ratio of 0.70764 ± 0.00014 was obtained for the Takijiri adamellite (third stage). The Katsuragi quartzdiorite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 85.1 ± 18.3 Ma (initial 87Sr/86Sr ratio of 0.70728 ± 0.00006), and mineral isochron ages of 76.9 ± 0.5 Ma and 74.8 ± 0.5 Ma. The Minamikawachi granite (fourth stage) gave a Rb–Sr whole‐rock isochron age of 72.8 ± 2.0 Ma with an initial 87Sr/86Sr ratio of 0.70891 ± 0.00021. These age data indicate that the igneous activity in younger Ryoke granitoids of Kinki district occurred between 80 and 70 Ma, except for the Katsuragi quartz diorite. The isotopic data on the various igneous stages in Kinki district correspond with the relative timing from field observations. Based on the initial 87Sr/86Sr ratios, the granitoids of the Ryoke belt in Kinki district are spatially divided into two groups. One is granitoids with initial 87Sr/86Sr ratio of 0.707–0.708, distributed in the southern part of the Ryoke belt. The other is granitoids with initial 87Sr/86Sr ratio of 0.708–0.710 distributed in the northern part of the Ryoke belt. The initial 87Sr/86Sr ratios of granitoids increase with decreasing (becoming younger) Rb–Sr whole‐rock isochron ages.  相似文献   

2.
The headwaters of the Ganga (the Alaknanda, Bhagirathi and the Ganga) were analysed for their dissolved major ions, Sr and 87Sr/86Sr on a biweekly to monthly basis over a period of one year to determine their temporal variations and the factors contributing to them. The concentrations of major ions and Sr show significant seasonal variation with lower values during monsoon period in all the three rivers. A similar trend is also observed for 87Sr/86Sr and Na*/Ca (Na* = Nar? Clr) suggesting relatively lower contribution of Sr and Na from silicates (which are more radiogenic in Sr) during monsoon. Budget calculations show that silicate derived dissolved Sr (Srs) in the river Ganga, Alaknanda and the Bhagirathi varied from 10 ± 4 to 27 ± 11, 7 ± 3 to 30 ± 12, 16 ± 6 to 57 ± 23% of measured Sr respectively with lower values during monsoon. The relative decrease in silicate erosion compared to carbonate during monsoon can result from several factors, these include higher dissolution kinetics of the carbonates, lower water–rock interaction time and availability of larger area for weathering. The annual discharge weighted Sr flux derived from the time series data is higher by ~20% from that based on peak flow Sr, and lower by ~40% compared to that derived from lean flow Sr concentration. The area‐normalized annual flux of dissolved Sr from the Ganga at Rishikesh is about five times its flux at Rajshahi (Bangladesh) and a few other major global rivers, such as the Amazon, indicating higher erosion rate over the Himalaya. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
广东南山花岗岩体位于陂头复式岩体西端,锆石的SHRIMP U-Pb年龄为158.1±1.8Ma,是燕山早期岩浆活动的产物。岩石化学特征显示岩体以高硅、富碱、贫Ca和Mg以及高TFeO/MgO、低CaO/Na2O为特征。其K2O/Na2O〉1,A/NK=7.8~11.92,A/CNK=1.33~1.68,属过铝质碱性岩石。在稀土和微量元素组成上,岩石富含稀土元素(除明显的负Eu异常,δEu=0.09~0.16)以及Zr、Y、Th、U、Nb等高场强元素,贫Ba、Sr、Ti等,高10000x Ga/Al(比值大于2.6)。在Zr、Nb、Ce、Y对10000×Ga/Al以及TFeO/MgO-SiO2等A型花岗岩多种判别图上,投影点主要落在A型花岗岩区,而与高分异的I、S型花岗岩明显不同。这些特征均指示,南山岩体具有铝质A型花岗岩的特点。通过Y-Nb-3Ga和Y-Nb-Ce构造环境判别图解将其进一步划分为A2型花岗岩,代表其形成于拉张的构造背景之下。本文在此研究基础上,认为南山花岗质岩浆可能形成于相对挤压的中侏罗世。而在晚侏罗世早期相对拉张的作用下,岩石圈减薄,软流圈地幔上涌,地壳的泥质岩和少量砂质岩受到幔源流体富集后发生部分熔融后上侵形成铝质A型花岗岩,且有较强的结晶分异作用。  相似文献   

4.
To evaluate influence of chemical weathering of the Qinghai-Tibet Plateau (QTP) on seawater 87Sr/86Sr variation, river water and sediment samples were collected, and their Sr concentrations and isotopic compositions analyzed, from the seven large rivers that originated from the QTP. By combining these with the data of the Ganges, Brahmaputra, Indus and Irrawaddy originated in the southern QTP, the total Sr flux of the eleven rivers reaches 3.47×109 mol·a−1, which accounts for 10.2% of the total Sr flux transported by the global rivers. The weighted mean 87Sr/86Sr is 0.71694, higher than the average value of the global rivers. The 87Srex (87Sr flux in excess of the seawater 87Sr/86Sr ratio) of the Chinese seven rivers is 1.55×106 mol·a−1, only accounting for about 6% of the value of the eleven rivers originated from QTP, and the Ganges-Brahmaputra system accounts for 86%. We assume that the QTP rivers have no strontium contributions to the oceans before ∼40 Ma and the Sr fluxes of the global rivers, except the QTP eleven rivers, are constant, then a maximum linear increase in Sr fluxes of the QTP rivers from zero to the modern value in response to tectonic uplift can explain ∼69% increase of seawater 87Sr/86Sr over the past ∼40 Ma and the remainder of 31% is perhaps provided from other factors. Supported by National Natural Science Foundation of China (Grant Nos. 40473009, 40331001, 40873001)  相似文献   

5.
The Powder River Basin (PRB) of Wyoming and Montana contains significant coal and coal bed natural gas (CBNG) resources. CBNG extraction requires the production of large volumes of water, much of which is discharged into existing drainages. Compared to surface waters, the CBNG produced water is high in sodium relative to calcium and magnesium, elevating the sodium adsorption ratio (SAR). To mitigate the possible impact this produced water may have on the quality of surface water used for irrigation, the State of Montana passed water anti‐degradation legislation, which could affect CBNG production in Wyoming. In this study, we sought to determine the proportion of CBNG produced water discharged to tributaries that reaches the Powder River by implementing a four end‐member mixing model within a Bayesian statistical framework. The model accounts for the 87Sr/86Sr, δ13CDIC, [Sr] and [DIC] of CBNG produced water and surface water interacting with the three primary lithologies exposed in the PRB. The model estimates the relative contribution of the end members to the river water, while incorporating uncertainty associated with measurement and process error. Model results confirm that both of the tributaries associated with high CBNG activity are mostly composed of CBNG produced water (70–100%). The model indicates that up to 50% of the Powder River is composed of CBNG produced water downstream from the CBNG tributaries, decreasing with distance by dilution from non‐CBNG impacted tributaries from the point sources to ~10–20% at the Montana border. This amount of CBNG produced water does not significantly affect the SAR or electrical conductivity of the Powder River in Montana. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号