首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Following the emblematic flank collapse of Mount St Helens in 1981, numerous models of flank sliding have been proposed. These models have allowed to largely improve the understanding of mechanisms involved in such landslides, which represent a tremendous risk for populations living around volcanoes. In this article, a new mode of landslide formation, related to buried calderas, is described. The model emphasizes the paramount importance of the hidden ring fault that, even when the caldera is buried, still remains a plane of weakness in the core of the edifice. Under certain conditions, this plane of weakness becomes activated as the upper part of a pre-existing critical slip surface and is used in the emplacement of huge landslides which travel downslope at a very high velocity. A natural example is taken from Piton de la Fournaise Volcano (La Réunion Island, Indian Ocean). It reveals that the primary cause triggering caldera rim collapse is partial unbuttressing of the flank of the volcano. In the natural example, this occurs through regressive erosion that excavates deep canyon in the direction of the buried caldera but other mechanisms may exist. On account of the large volumes of material involved in caldera rim collapse as well as their long runout distances, such a volcanic hazard should be taken into account on every volcano where buried calderas are suspected.  相似文献   

2.
Based upon a re-interpretation of previous data and a new field campaign, a structural evolution is proposed for the early history of Piton de la Fournaise volcano from 500,000 to 50,000 years. Conceptually, it is shown that the formation of a caldera in which lava flows are contained inside the caldera depression, gives time for erosion to excavate deep canyons on the external slopes of the volcano, for example, the Rivière des Remparts, the Rivière Langevin and the Rivière de l'Est canyons on Piton de la Fournaise volcano. These canyons are infilled when lavas, filling the caldera and overflowing its rim, are able again to flow on the external slopes of the volcano. In the past, this excavating/infilling process has occurred twice following the formation of the Rivière des Remparts and Morne Langevin calderas. The formation of the third caldera, the Plaine des Sables caldera, was followed by the excavation of the current canyons. In addition to this process, two large landslides have been documented in the field. The first, which happened about 300,000 years ago, is apparently the first episode of the break up of Piton de la Fournaise volcano, predating the formation of the four large calderas. The second landslide, which occurred 150,000 years ago and is considered to be less extensive, has carried away the entire southern flank of the Rivière des Remparts caldera.  相似文献   

3.
The evolution of the Colima volcanic complex can be divided into successive periods characterized by different dynamic and magmatic processes: emission of andesitic to dacitic lava flows, acid-ash and pumice-flow deposits, fallback nuées ardentes leading to pyroclastic flows with heterogeneous magma, plinian air-fall deposits, scoriae cones of alkaline and calc-alkaline nature. Four caldera-forming events, resulting either from major ignimbrite outbursts or Mount St. Helens-type eruptions, separate the main stages of development of the complex from the building of an ancient shield volcano (25 × 30 km wide) up to two summit cones, Nevado and Fuego.The oldest caldera, C1 (7–8 km wide), related to the pouring out of dacitic ash flows, marks the transition between two periods of activity in the primitive edifice called Nevado I: the first one, which is at least 0.6 m.y. old, was mainly andesitic and effusive, whereas the second one was characterized by extrusion of domes and related pyroclastic products. A small summit caldera, C2 (3–3.5 km wide), ended the evolution of Nevado I.Two modern volcanoes then began to grow. The building of the Nevado II started about 200,000 y. ago. It settled into the C2 caldera and partially overflowed it. The other volcano, here called Paleofuego, was progressively built on the southern side of the former Nevado I. Some of its flows are 50,000 y. old, but the age of its first outbursts is not known. However, it is younger than Nevado II. These two modern volcanoes had similar evolutions. Each of them was affected by a huge Mount St. Helens-type (or Bezymianny-type) event, 10,000 y. ago for the Paleofuego, and hardly older for the Nevado II. The landslides were responsible for two horseshoe-shaped avalanche calderas, C3 (Nevado) and C4 (Paleofuego), each 4–5 km wide, opening towards the east and the south. In both cases, the activity following these events was highly explosive and produced thick air-fall deposits around the summit craters.The Nevado III, formed by thick andesitic flows, is located close to the southwestern rim of the C3 caldera. It was a small and short-lived cone. Volcan de Fuego, located at the center of the C4 caldera, is nearly 1500 m high. Its activity is characterized by an alternation of long stages of growth by flows and short destructive episodes related to violent outbursts producing pyroclastic flows with heterogeneous magma and plinian air falls.The evolution of the primitive volcano followed a similar pattern leading to formation of C1 and then C2. The analogy between the evolutions of the two modern volcanoes (Nevado II–III; Paleofuego-Fuego) is described. Their vicinity and their contemporaneous growth pose the problem of the existence of a single reservoir, or two independent magmatic chambers, after the evolution of a common structure represented by the primitive volcano.  相似文献   

4.
In order to explain the presence of voluminous volcanic debris avalanche deposits around a stratovolcano, reactivation of vertical faults beneath a volcanic cone has been tested using analogue models. Reactivation of a single vertical fault beneath a cone generates a normal fault and an upturning of the layers creating a bulge on the flank. The upturning induces a flank collapse characterized by a typical horseshoe-shaped scar called an avalanche caldera. Reactivation of two vertical faults beneath a cone also generates a normal fault and a summit bulge. This bulge may result from the movement along a reverse fault. A large collapse is generated within the angle created by the two vertical faults. The angle of the collapse can be up to 140° whereas this angle is typically 120° for a dome intrusion. Collapse is instantaneous and is favoured by the presence of ductile layers (ash-and-pumice formations in the example considered) in a stratovolcano complex. The model may be applicable to volcanoes in a state of dormancy (or extinction) in regions with active regional tectonism. We suggest this mechanism of collapse in the case of the Cantal stratovolcano (Massif Central, France) to explain the presence of voluminous volcanic debris avalanche deposits around this volcano.  相似文献   

5.
Edifices of stratocones and domes are often situated eccentrically above shallow silicic magma reservoirs. Evacuation of such reservoirs forms collapse calderas commonly surrounded by remnants of one or several volcanic cones that appear variously affected and destabilized. We studied morphologies of six calderas in Kamchatka, Russia, with diameters of 4 to 12 km. Edifices affected by caldera subsidence have residual heights of 250–800 m, and typical amphitheater-like depressions opening toward the calderas. The amphitheaters closely resemble horseshoe-shaped craters formed by large-scale flank failures of volcanoes with development of debris avalanches. Where caldera boundaries intersect such cones, the caldera margins have notable outward embayments. We therefore hypothesize that in the process of caldera formation, these eccentrically situated edifices were partly displaced and destabilized, causing large-scale landslides. The landslide masses are then transformed into debris avalanches and emplaced inside the developing caldera basins. To test this hypothesis, we carried out sand-box analogue experiments, in which caldera formation (modeled by evacuation of a rubber balloon) was simulated. The deformation of volcanic cones was studied by placing sand-cones in the vicinity of the expected caldera rim. At the initial stage of the modeled subsidence, the propagating ring fault of the caldera bifurcates within the affected cone into two faults, the outermost of which is notably curved outward off the caldera center. The two faults dissect the cone into three parts: (1) a stable outer part, (2) a highly unstable and subsiding intracaldera part, and (3) a subsiding graben structure between parts (1) and (2). Further progression of the caldera subsidence is likely to cause failure of parts (2) and (3) with failed material sliding into the caldera basin and with formation of an amphitheater-like depression oriented toward the developing caldera. The mass of material which is liable to slide into the caldera basin, and the shape of the resulted amphitheater are a function of the relative position of the caldera ring fault and the base of the cone. A cone situated mostly outside the ring fault is affected to a minor degree by caldera subsidence and collapses with formation of a narrow amphitheater deeply incised into the cone, having a small opening angle. Accordingly, the caldera exhibits a prominent outward embayment. By contrast, collapse of a cone initially situated mostly inside the caldera results in a broad amphitheater with a large opening angle, i.e. the embayment of the caldera rim is negligible. The relationships between the relative position of an edifice above the caldera fault and the opening angle of the formed amphitheater are similar for the modeled and the natural cases of caldera/cone interactions. Thus, our experiments support the hypothesis that volcanic edifices affected by caldera subsidence can experience large-scale failures with formation of indicative amphitheaters oriented toward the caldera basins. More generally, the scalloped appearance of boundaries of calderas in contact with pre-caldera topographic highs can be explained by the gravitational influence of topography on the process of caldera formation.Editorial responsibility: J. Stix  相似文献   

6.
The standard model of caldera formation is related to the emptying of a magma chamber and ensuing roof collapse during large eruptions or subsurface withdrawal. Although this model works well for numerous volcanoes, it is inappropriate for many basaltic volcanoes (with the notable exception of Hawaii), as these have eruptions that involve volumes of magma that are small compared to the collapse. Many arc volcanoes also have similar oversized depressions, such as Poas (Costa Rica) and Aoba (Vanuatu). In this article, we propose an alternative caldera model based on deep hydrothermal alteration of volcanic rocks in the central part of the edifice. Under certain conditions, the clay-rich altered and pressurized core may flow under its own weight, spread laterally, and trigger very large caldera-like collapse. Several specific mechanisms can generate the formation of such hydrothermal calderas. Among them, we identify two principal modes: mode 1: ripening with summit loading and flank spreading and mode II: unbuttressing with flank subsidence and flank sliding. Processes such as summit loading or flank subsidence may act simultaneously in hybrid mechanisms. Natural examples are shown to illustrate the different modes of formation. For ripening, we give Aoba (Vanuatu) as an example of probable summit loading, while Casita (Nicaragua) is the type example of flank spreading. For unbuttressing, Nuku Hiva Island (Marquesas) is our example for flank subsidence and Piton de la Fournaise (La Réunion) is our example of flank sliding. The whole process is slow and probably needs (a) at least a few tens of thousands of years to deeply alter the edifice and reach conditions suitable for ductile flow and (b) a few hundred years to achieve the caldera collapse. The size and the shape of the caldera strictly mimic that of the underlying weak core. Thus, the size of the caldera is not controlled by the dimensions of the underlying magma reservoir. A collapsing hydrothermal caldera could generate significant phreatic activity and trigger major eruptions from a coexisting magmatic complex. As the buildup to collapse is slow, such caldera-forming events could be detected long before their onset.  相似文献   

7.
This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande–Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP–CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41° and N64°, and decoupled from the volcanic structures.  相似文献   

8.
Erosion calderas: origins, processes, structural and climatic control   总被引:1,自引:0,他引:1  
 The origin and development of erosion-modified, erosion-transformed, and erosion-induced depressions in volcanic terrains are reviewed and systematized. A proposed classification, addressing terminology issues, considers structural, geomorphic, and climatic factors that contribute to the topographic modification of summit or flank depressions on volcanoes. Breaching of a closed crater or caldera generated by volcanic or non-volcanic processes results in an outlet valley. Under climates with up to ∼2000–2500 mm annual rainfall, craters, and calderas are commonly drained by a single outlet. The outlet valley can maintain its dominant downcutting position because it quickly enlarges its drainage basin by capturing the area of the primary depression. Multi-drained volcanic depressions can form if special factors, e.g., high-rate geological processes, such as faulting or glaciation, suppress fluvial erosion. Normal (fluvial) erosion-modified volcanic depressions the circular rim of which is derived from the original rim are termed erosion craters or erosion calderas, depending on the pre-existing depression. The resulting landform should be classed as an erosion-induced volcanic depression if the degradation of a cluster of craters produces a single-drained, irregular-shaped basin, or if flank erosion results in a quasi-closed depression. Under humid climates, craters and calderas degrade at a faster rate. Mostly at subtropical and tropical ocean-island and island-arc volcanoes, their erosion results in so-called amphitheater valleys that develop under heavy rainfall (>∼2500 mm/year), rainstorms, and high-elevation differences. Structural and lithological control, and groundwater in ocean islands, may in turn preform and guide development of high-energy valleys through rockfalls, landsliding, mudflows, and mass wasting. Given the intense erosion, amphitheater valleys are able to breach a primary depression from several directions and degrade the summit region at a high rate. Occasionally, amphitheater valleys may create summit depressions without a pre-existing crater or caldera. The resulting, negative landforms, which may drain in several directions and the primary origin of which is commonly unrecognizable, should be included in erosion-transformed volcanic depressions. Received: 4 January 1998 / Accepted: 18 January 1999  相似文献   

9.
Plio-Quaternary volcanism played an important role in the present physical state of Eastern Anatolia. Mount Nemrut, situated to the west of Lake Van is one of the main volcanic centers in the region, with a spectacular summit caldera 8.5 × 7 km in diameter. The most recent eruptions of the volcano were in 1441, 1597 and 1692. Nemrut Lake covers the western half of the caldera; it is a deep, half-bowl-shaped lake with a maximum depth of 176 m. Numerous eruption centers are exposed within the caldera as a consequence of magma–water interaction. Current activity of Nemrut caldera is revealed as hot springs, fumaroles and a small, hot lake.Self-potential and bathymetric surveys carried out in the caldera were used to characterize the structure of the caldera and the associated hydrothermal fluid circulation. In addition, analyses based on digital elevation models and satellite imagery were used to improve our knowledge about the structure of the caldera. According to SP results, the flanks of the volcano represent “the hydrogeologic zone”, whereas the intra-caldera region is an “active hydrothermal area” where the fluid circulation is controlled by structural discontinuities. There is also a northern fissure zone which exhibits hydrothermal signatures. Nemrut caldera collapsed piecemeal, with three main blocks. Stress controlling the collapse mechanism seems to be highly affected by the regional neotectonic regime. In addition to the historical activity, current hydrothermal and hydrogeologic conditions in the caldera, in which there is a large lake and shallow water table, increase the risk of the quiescent volcano.  相似文献   

10.
Caldera morphology on the six historically active shield volcanoes that comprise Isabela and Fernandina islands, the two westernmost islands in the Galapagos archipelago, is linked to the dynamics of magma supply to, and withdrawal from, the magma chamber beneath each volcano. Caldera size (e.g., volumes 2–9 times that of the caldera of Kilauea, Hawai'i), the absence of well-developed rift zones and the inability to sustain prolonged low-volumetric-flow-rate flank eruptions suggest that magma storage occurs predominantly within centrally located chambers (at the expense of storage within the flanks). The calderas play an important role in the formation of distinctive arcuate fissures in the central part of the volcano: repeated inward collapse of the caldera walls along with floor subsidence provide mechanisms for sustaining radially oriented least-compressive stresses that favor the formation of arcuate fissures within 1–2 km outboard of the caldera rim. Variations in caldera shape, depth-to-diameter ratio, intra-caldera bench location and the extent of talus slope development provide insight into the most recent events of caldera modification, which may be modulated by the episodic supply of magma to each volcano. A lack of correlation between the volume of the single historical collapse event and its associated volume of erupted lava precludes a model of caldera formation linked directly to magma withdrawal. Rather, caldera collapse is probably the result of accumulated loss from the central storage system without sufficient recharge and (as has been suggested for Kilauea) may be aided by the downward drag of dense cumulates and intrusives.  相似文献   

11.
Previous petrological and phase-equilibrium experimental studies on recent silicic andesites from Mount Pelée volcano have evidenced comparable pre-eruptive conditions for plinian and dome-forming (pelean herein) eruptions, implying that differences in eruptive style must be primarily controlled by differences in degassing behaviour of the Mount Pelée magmas during eruption. To further investigate the degassing conditions of plinian and pelean magmas of Mount Pelée, we study here the most recent Mount Pelée's products (P1 at 650 years B.P., 1902, and 1929 eruptions, which cover a range of plinian and pelean lithologies) for bulk-rock vesicularities, glass water contents (glass inclusions in phenocrysts and matrix glasses) and microtextures. Water contents of glass inclusions are scattered in the plinian pumices but on average compare with the experimentally-deduced pre-eruptive melt water content (i.e., 5.3–6.3 wt.%), whereas they are much lower in the dominant pelean lithologies (crystalline, poorly vesicular lithics and dome samples). This indicates that the glass inclusions of the pelean products have undergone strong leakage and do not represent pre-eruptive water contents. The water content of the pyroclast matrix glasses are thought to closely represent the residual water content in the melt at the time of fragmentation. Determination of the water contents of both the pre-eruptive melt and matrix glasses allows the estimation of the amount of water exsolved upon syn-eruptive degassing. We find the amount of water exsolved during the eruptive process to be higher in the pelean products than in the plinian ones, typically 90–100 and 65–70% of the initial water content, respectively. The vesicularities calculated from the amount of exsolved water compare with the measured vesicularities for the plinian pumices, consistent with a closed-system, near-equilibrium degassing up to fragmentation. By contrast, the low residual water contents, low groundmass vesicularities and extensive groundmass crystallization of the pelean products are direct evidence of open-system degassing. Microtextural features, including silica-bearing and silica-free voids in the pelean lithologies may represent a two-stage vesiculation.  相似文献   

12.
Roccamonfina, part of the Roman Potassic Volcanic Province, is an example of a composite volcano with a complex history of caldera development. The main caldera truncates a cone constructed predominantly of this caldera may have been associated with one of the ignimbritic eruptions of the Brown Leucitic Tuff (BLT) around 385 000 yr BP. The Campagnola Tuff, the youngest ignimbrite of the BLT, however, drapes the caldera margin and must postdate at least the initial stages of collapse. During the subsequent history of the caldera there were several major explosive eruptions. The largest of these was that of the Galluccio Tuff at about 300 000 yr BP. It is likely that there was further collapse within the main caldera associated with these eruptions. It is of note that despite these subsequent major explosive eruptions later collapse occurred within the confines of the main caldera. Between eruptions caldera lakes developed producing numerous lacustrine beds within the caldera fill. Extensive phases of phreatomagmatic activity generated thick sequences of pyroclastic surge and fall deposits. Activity within the main caldera ended with the growth of a large complex of basaltic trachyandestite lava domes around 150 000 yr BP. Early in the history of Roccamonfina sector collapse on the northern flank of the volcano formed the northern caldera. One of the youngest major events on Roccamonfina occurred at the head of this northern caldera with explosive activity producing the Conca Ignimbrite and associated caldera. There is no evidence that there was any linkage in the plumbing systems that fed eruptions in the main and northern calderas.  相似文献   

13.
There have been no substantial changes in the thermal patterns at the summit of Mount Rainier in the period September 1964–September 1966, within the detection limits of the infrared instrumentation. Some differences in radiance are attributed to differences in snow cover. The highest apparent temperature is at a snow-free area on the west flank of the summit cone, several hundred feet below the west crater rim. An anomaly at this site was recorded on both infrared surveys, but no prior reports of thermal activity here have been made by ground parties. Other anomalous thermal zones at the summit are on the northern quadrants of both crater rims. A very small, low-temperature fumarole reported on Mount Adams was not detected, nor were any other thermal manifestations recorded. One anomaly consisting of a close-spaced cluster of thermal spots was detected at The Boot on Mount St. Helens and corresponds to a known fumarole area. The only thermal feature seen on Mount Shasta is near the summit at a thermal spring that has been observed by many climbers. Two anomalies were found on the north flank of Lassen Peak. Thermal activity had not been previously reported at either site, though one is in a known solfatarized area. No ground investigation has been made at the other location. Much of the other thermal activity in the Lassen Peak area is in the northeast quadrant of Brokeoff Caldera. Most of these features are well documented in the literature; others not previously described are in fairly accessible areas and doubtless result from springs and fumaroles related to Brokeoff Caldera.  相似文献   

14.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

15.
The Reporoa Caldera occupies the northern end of the Reporoa Depression, previously described as a tectonic fault-angle depression. Earlier confirmation of the topographic basin as a caldera had been hindered by the lack of an associated young pyroclastic flow deposit of large enough volume to have caused caldera collapse. New exposures on the eastern margin of the Reporoa basin reveal thick lithic lag breccias (>30 m) interbedded within the 0.24 Ma Kaingaroa Ignimbrites. These ignimbrites were previously attributed to the adjacent Okataina Volcanic Centre. Lag breccia thicknesses and maximum clast sizes decrease rapidly outward from the caldera rim, and discrete breccias are absent from ignimbrite sections more than 3 km from the rim. The lithic lag breccias, together with structural and geophysical evidence, confirm Reporoa Caldera as the source of the c. 100 km3 Kaingaroa Ignimbrites, adding another major rhyolitic volcanic centre to the seven previously recognized in the Taupo Volcanic Zone. Other, older, calderas may also be present in the Reporoa Depression.  相似文献   

16.
The 1902–1905 activity of Montagne Pelée represents a moderately large eruptive cycle typical of a subduction zone volcano. It followed a three-centuries-long repose interrupted only in 1792 by two small phreatic explosions and minor (phreatomagmatic?) eruptions in 1851–1852. The volcano decidedly awakened in early 1902 with increasing fumaroles at l'Etang Sec summit crater, light earthquakes and phreatic activity from 23 April onwards. On 2–3 May the eruption became phreatomagmatic and much more active. Destructive lahars culminated on 5 May and during the night of 7–8 May, causing 23 casualties at the Guérin factory and about 400 others at Le Prêcheur. On 8 May at 08:02 local time a climactic ‘nuée ardente’ destroyed the city of Saint-Pierre, 8 km south of the crater, and killed all its 27–28,000 inhabitants but one, or possibly two. Testimonies from eyewitnesses of this event, calculations made on its effects, and careful studies of its deposits support the interpretation of a powerful lateral blast (175−140 m/s) accompanied by a fast-moving pyroclastic flow which was directed N-S, i.e. toward the town itself. The temperature of the flow decreased from that of the acid andesite magma (about 900°C) at the crater to 400–200°C as it reached Saint-Pierre. Climactic ‘pelean’ eruptions, initiated by strong explosions, were renewed on 20 May and 30 August. This latter produced 1,000 additional victims at Morne Rouge, making a total of about 29,000 victims for the entire eruptive period. Less violent eruptions, without major explosions, took place on 26 May, 6 June, 9 July and from late 1902 to July 1905, generating slow-moving pyroclastic flows (50 m/s or less), linked to relatively quiet dome growth.The catastrophe of Saint-Pierre resulted from an insufficient knowledge of volcanic hazards at the time and particularly from the total ignorance of pyroclastic flow (nuée ardente) phenomena. Future hazards in Martinique include the renewal of pelean eruptions and widespread plinian activity, such as has occurred in the past 5,000 years, together with a less probable sector collapse triggering tsunami. As major magmatic eruptions of Montagne Pelée may be separated by repose periods of more than 500 years, a long-term instrumental surveillance of the volcano is needed, and adequate concepts in urban planning should be developed and sustained in the next centuries.  相似文献   

17.
Southern Kyushu, Japan, includes a chain of large and small calderas and active volcanoes, and the greatest part of it is covered with thick pyroclastic ejecta. The regional and local structures of this area are discussed from the standpoint of physical volcanology, with consideration of all available data.The regional structure of this area is examined in the light of gravity and geomagnetic anomalies. Two layers of the earth's uppermost crust are defined by spectrum analysis of the gravity anomalies. These two layers are identical with the two identified by seismicwave velocities. The Bouguer gravity anomalies are relatively high and rather monotonous over outcrops of the Mesozoic basement and the granite, but are relatively low and perturbed over calderas and caldera-like structures. Two low-gravity anomalies in Kagoshima Bay are remarkable. One is circular, with its center on the Aira caldera. The other is elongated between the Satsuma and Oosumi peninsulas. The southern end of the latter anomaly is occupied by the Ata caldera. Discussion of the gravity anomalies of the Aira caldera suggests that the subsurface basement has a funnel shape and is overlain by ‘fallback’. The sub bottom geology of the caldera suggests that it is formed by a few smaller depressions, though the distribution of the overall gravity anomalies is parallel with its shape.The southern part of Kagoshima Bay is characterized by a graben-like topography and low-gravity anomalies and, moreover, by several calderas. The middle part, between the Aira and Ata calderas, may have a graben-like structure. A profile crossing the bay through Sakurajima volcano is modeled on the basis of results from drilling and gravity surveys. The basement has a graben-like structure and is filled with coarse and low-density deposits, and the structure continues northwards to the Aira caldera with a funnel shape.A comparison of this area with the Taupo-Rotorua depression in New Zealand and Lake Toba in Indonesia, leads the authors to the conclusion that such major volcanic depressions may have been formed by amalgamation of a series of caldera-like structures which were formed by multiple violent explosions accompanied by ejection of a tremendous amount of pyroclastic material.  相似文献   

18.
About 4,300 years ago, 10 km3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40–75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude.Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.  相似文献   

19.
Detailed total-intensity aeromagnetic surveys of the Kuttyaro and Aso caldera regions, eastern Hokkaido and central Kyushu, were made during early 1964 under the auspices of the U.S.-Japan Co-operative Science Program in conjunction with a project for geophysical studies of calderas in Japan. Each caldera has a maximum diameter of about 22 km; the flights cover a 60 × 60 km rectangular area in each region. The Kuttyaro survey also encompasses the older caldera Akan, south-west of Kuttyaro, and the younger caldera Mashu to the east. All three lie within the Chīshīma (Kurile) volcanic zone. The isomagnetic contour map shows this zone as a belt of short wave-length anomaies which trends east-northeast across the region. Broad wavelength anomalies with trends intersecting the Chīshīma belt at an acute angle probably reflect structural relief on the Neogene volcanic basement concealed beneath Kuttyaro pyroclastic flows. The centre of Kuttyaro caldera coincides with the sharp southern termination of a strong basement high, whereas caldera faults and post-caldera domes have little magnetic expression. Mashu caldera is marked by a minimum in the position of the caldera lake; a symmetrical positive anomaly centering southeast of the caldera suggests either a buried older volcanic edifice or an intrusion. Akan caldera is represented by a magnetic depression encompassing a positive anomaly produced by its central post-caldera cone. The depression extends north of the geologically-deduced boundary of the caldera and may include an earlier collapse structure. Several volcanoes and lava sequences in the region produce negative anomalies due to inverse polarization. The most significant feature of the Aso isomagnetic map is a large, elongate positive anomaly that occupies the southern half of the caldera and extends about one caldera diameter to the south-west along the trend of the Median Tectonic Line of south-west Japan. Whether the anomaly represents the pre-Tertiary basement complex or a younger intrusion perhaps associated with Aso eruptive activity is uncertain. However, the causative body is abruptly truncated within the caldera by a major east-south-east structure passing through the eastern rim and coincident with the approximate locus of resurgent central vent eruptions. The structure may be a fault system that provided egress for the Aso pyroclastic flows. Superimposed on the basement anomaly are the effects of the topography of the caldera, the superficial caldera structure, and the post-caldera cones. An area of intense solfataric activity in the Kuju group of young volcanoes north of Aso has a pronounced negative anomaly. These two surveys illustrate the utility of the magnetic method for investigations of basement structure in caldera regions. They have served as a guide in interpreting reconnaissance aeromagnetic profiles flown concurrently for this project across some 14 other calderas or caldera-like structures in the Japanese islands.  相似文献   

20.
During the past 1.2 m.y., a magma chamber of batholithic proportions has developed under the 100 by 30 km Toba Caldera Complex. Four separate eruptions have occurred from vents within the present collapse structure, which formed from eruption of the 2800 km3 Youngest Toba Tuff (YTT) at 74 ka. Eruption of the three older Toba Tuffs alternated from calderas situated in northern and southern portions of the present caldera. The northern caldera apparently developed upon a large andesitic stratovolcano. The calderas associated with the three older tuffs are obscured by caldera collapse and resurgence resulting from eruption of the YTT. Samosir Island and the Uluan Block are two sides of a single resurgent dome that has resurged since eruption of the YTT. Samosir Island is composed of thick YTT caldera fill, whereas the Uluan Block consists mainly of the Oldest Toba Tuff (OTT). In the past 74000 years lava domes have been extruded on Samosir Island and along the caldera's western ring fracture. This part of the ring fracture is the site of the only current activity at Toba: updoming and fumarolic activity. The Toba eruptions document the growth of the laterally continuous magma body which eventually erupted the YTT. Repose periods between the four Toba Tuffs range between 0.34 and 0.43 m.y. and give insights into pluton emplacement and magmatic evolution at Toba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号