首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 202 毫秒
1.
The low-energy string gravitation is investigated for the case of reduction with a variable (in string units) inner space. A flat cosmological model of the corresponding four-dimensional theory is constructed. The model equations are analyzed qualitatively for a potential-dominated scalar field as the source. It is demonstrated that an extended inflation stage with one purely scalar dilaton field is possible here, in contrast with the case of a constant inner space. The pattern of cosmological evolution in various conformal representations is discussed.Translated from Astrofizika, Vol. 38, No. 1, pp. 99–119, January–March, 1995.  相似文献   

2.
A cosmological model is discussed which is based on interpretation of the red shift by decrease of the light speed with time everywhere in the Universe beginning with a certain moment of time in the past. The model is described by a metric in which the light speed depends on time and the radius of the curvature of three-dimensional space remains constant (c-metric). It is shown that this metric leads to the same observed facts and formulas of different characteristics that the metric of standard cosmology does but with essentially different physical interpretation. Such a property is the consequence of conformity of spaces being defined by both metrics. The agreement with the fundamental physics laws is achieved by introducing the evolution of a number of other fundamental constants synchronously with the variation of the light speed. The model considered connected the evolution of the Universe with evolution of physical constants and permits explaining some unclear cosmological phenomena — for example, a high isotropy of the relict background and superluminal speed in quasars.  相似文献   

3.
We use the generalized Brans-Dicke theory, in which the Pauli metric is identified to be the physical space-time metric, to study the Universe in different epochs. Exact analytical expressions for dilaton field , cosmological radiusR and density parameter are obtained fork=+1,0,–1 Universe in the radiation-dominated epoch. For matter dominated Epoch, exact analytical expressions for Hubble parameterH, cosmological radius, dilaton field, deceleration factorq, density parameter and the gravitational coupling of the ordinary matter are obtained for the flat Universe. Other important results are: (1) the density parameter is always less than unity for the flat Universe because the dilaton field plays a role as an effective dark matter, and (2) the new Brans-Dicke parameter must be larger than 31.75 in order to consistent with the observed data.  相似文献   

4.
We utilise a form for the Hubble parameter to generate a number of solutions to the Einstein field equations with variable cosmological constant and variable gravitational constant. The Hubble law utilised yields a constant value for the deceleration parameter. A variety of solutions is presented in the Robertson-Walker spacetimes. A generalisation of the cosmic scale factor is utilised in the anisotropic Bianchi I spacetime to illustrate that new solutions may also be found in spacetimes with less symmetry than Robertson-Walker. We also show that the constant deceleration parameter used is consistent with alternate theories of gravity by considering the scalar-tensor theory of Lau and Prokhovnik with ak = 0 Robertson-Walker background.  相似文献   

5.
In this paper, we have investigated the inflationary Kantowski-Sachs cosmological model in the presence of mass less scalar field with a flat potential. To get an inflationary solution, we have considered a flat region of a constant potential V. Some physical and kinematical properties of the model are studied.  相似文献   

6.
The problem of interpretation of recession velocities reflects straightforwardly the curvature of space‐time. In a recent article it was claimed that this problem would show that the General Relativity Theory had to and would overrule the Special Relativity Theory (Davis & Lineweaver 2003; Lineweaver & Davis 2005). This must be corrected. It is shown that the simplistic definition of the recession velocity as change in distance on a space of constant cosmological time yields in fact a pseudo‐euclidean angle and that the simplest correct definition of the recession velocity fits perfectly with the SRT formula for the Doppler effect. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Thanks to its fitting triumph, the ΛCDM paradigm is assumed to be the most powerful model, for describing the Universe dynamics, over much the myriad of cosmological models. Unfortunately, the quest of a self-consistent model remains not well explained, because it is not clear how to solve the problems of fine-tuning and coincidence, afflicting the ΛCDM framework; as a matter of fact, these theoretical drawbacks do not allow to consider the ΛCDM model, as the final picture of the modern cosmological scenario. Here, we show that the simplest model, which provides a constant equation of state for the pressure, leads to a generalization of ΛCDM, reducing to it in a particular case. Moreover, we highlight the physical mechanisms of this model, describing the thermodynamical reasons why a constant pressure should be negative in an expanding Universe. In addition, we fit the free parameters of our model by minimizing the chi square through the age differential method, involving a direct measurement of H.  相似文献   

8.
By assuming that the whole matter of the Universe possesses a dilatational degree of freedom, we attempted to show the equivalence between the curvedmetric of space-time and the flat metric of dilated space-time. In the framework of this procedure we supposed that the metrical field and the physical space and time change their roles. The basic result suggests that gravitation and dilatation are interrelated phenomena. In addition we discuss the possibility of the Universe which is of a hybrid type: it possesses at the same time properties of the evolutionary and stationary Universe. Finally, we discuss the lenghtening of day in time as an example which can support our ideas. There was suggested that this phenomenon appears partly as cosmological manifestation.  相似文献   

9.
Using the relation proposed by Weinberg in 1972, combining quantum and cosmological parameters, we prove that the self gravitational potential energy of any fundamental particle is a quantum, with physical properties independent of the mass of the particle. It is a universal quantum of gravitational energy, and its physical properties depend only on the cosmological scale factor R and the physical constants and c. We propose a modification of the Weinberg’s relation, keeping the same numerical value, but substituting the cosmological parameter H/c by 1/R.  相似文献   

10.
Robertson-Walker cosmological model with bulk viscosity is investigated with equation of statep=(–1). The cosmological solution of the model is obtained with the help of the special law of variation for Hubble's deceleration parameter. Some physical consequences of the solution is studied pertaining to two extreme cases of the equation of state.  相似文献   

11.
The COSPIN/KET experiment onboard Ulysses has been monitoring the flux of 3–20 MeV electrons in interplanetary space since the launch of Ulysses in October 1990. The origin of these electrons has been known for a long time to be the Jovian magnetosphere. Propagation models assuming interplanetary diffusion of these electrons in the ideal Parker magnetic field were successfully developed in the past. The average electron flux measured by our experiment agrees with these models for most of the times before and after the Jovian flyby of February 1992, i.e. in and out of the ecliptic down to 28° S of heliographic latitude for the last data presented here (end of March 1993).However, in addition to this average flux level well accounted for by diffusion in an ideal Parker field, we have found very short duration electron events which we call “jets”, characterized by: (i) a sharp increase and decrease of flux; (ii) a spectrum identical to the electron spectrum in the Jovian magnetosphere; and (iii) a strong first-order anisotropy. These jets only occur when the magnetic field at Ulysses lies close to the direction of Jupiter, and most of the time (86% of the events) points outwards from Jupiter, i.e. has the same polarity after the flyby as the Jovian dipole (North to South). These events are interpreted as crossings by Ulysses of magnetic flux tubes or sheets directly connected to the location of the Jovian magnetosphere from which electrons escape into interplanetary space. The average thickness of these sheets is 1011cm or 14 Jovian radii. These jets are clearly identified up to 0.4 a.u. before the Jupiter flyby in the ecliptic plane, and up to 0.9 a.u. out of the ecliptic.Moreover, the characteristic rocking of the electron spectrum in the Jovian magnetosphere with a 10 h periodicity is found to be present during the jets, and predominantly during them. In the past, this modulation has been reported to be present in interplanetary space as far as 1 a.u. upwind of Jupiter, a fact which cannot be accounted for by diffusion in the average Parker magnetic field. Our finding gives a simple explanation to this phenomenon, the 10 h modulation being carried by the “jet” electrons which travel with no appreciable diffusion along magnetic field lines with a direction far from the ideal Parker spiral.  相似文献   

12.
We have presented in homogeneous cosmological models within the framework of Lyra geometry. We have considered an inhomogeneous spherically symmetric higher dimensional model in presence of a mass less scalar field whose potential has a flat part. The scalar field is considered to be inhomogeneous. Also an inhomogeneous cosmological model is derived in a Kaluza-Klein type of space time. The matter field is taken as an inhomogeneous distribution of fluid. It is observed that there is no singularity at finite past in our model and the desirable feature of dimensional reduction is also possible for the extra space. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In a microwave background polarization map that covers only part of the sky, it is impossible to separate the E and B components perfectly. This difficulty in general makes it more difficult to detect the B component in a data set. Any polarization map can be separated in a unique way into “pure E”, “pure B” and “ambiguous” components. Power that resides in the pure E(B) component is guaranteed to be produced by E(B) modes, but there is no way to tell whether the ambiguous component comes from E or B modes. A polarization map can be separated into the three components either by finding an orthonormal basis for each component, or directly in real space by using Green functions or other methods.  相似文献   

14.
We discuss the possibility of setting upper limits to deviations of the dimensionD of space from the standard integer value of 3. The method we suggest — a reanalysis of the Planck law for the black-body radiation in aD-dimensional space — is less sensitive than other methods previously suggested. It offers, however, the possibility of probing the fractal dimension of space-time over cosmological distances.  相似文献   

15.
Assuming that gamma-ray bursts (GRB) originate from binary neutron star (NS) or black holes (BH) merging in distant galaxies, theoretical logN-logS distributions for gamma-ray bursts (GRB) are calculated using the compact binaries coalescence rates computed for model galaxies with different star formation histories. A flat cosmological model ( = 1) with different values of the cosmological constant is used. The calculated source evolution predicts a 5–10 times increase of the source statistics at count rates 3–10 times lower than the existing BATSE sensitivity limit. The most important parameter in fitting the 2nd BATSE catalogue is the initial redshift of star formation, which is found to bez * = 2 — 5 depending on a poorly determined average spectral index of GRB.  相似文献   

16.
The distribution of galaxies in the pencil-beam surveys of Broadhurstet al. which proved periodical across 8–10 consecutive steps in a flat dust model withq 0=0.5 is found to reveal extended periodicity up to 16–17 phase-coherent steps, covering the total sample, in a flat, moderately inflationary model withq 0=–0.5 (vacuum/dust ratio 2/1). In the latter model the vacuum component helps to reach the critical density and lengthens the expansion time-scale. It is shown that the explanation of the found periodicity as a consequence of space compactification as suggested by G. Paál twenty years ago in connection with apparent quasar periodicities is still possible.  相似文献   

17.
We investigate the influence of the cosmological constant, Λ, on the bending of light by a charged black hole in a de Sitter spacetime. Despite vanishing of the cosmological constant in the second order null geodesic equation, considering the method introduced by Rindler and Ishak (2007), we obtain an expression for the deflection angle, consistent with previous results for Schwarzschild, Schwarzschild-de Sitter (SdS), and Reissner-Nordstrom (RN) spacetimes.  相似文献   

18.
In this paper we study the evolution of a LRS Bianchi I Universe, filled with a bulk viscous cosmological fluid in the presence of time varying constants “but” taking into account the effects of a c-variable into the curvature tensor. We find that the only physical models are those which “constants” G and c are growing functions on time t, while the cosmological constant Λ is a negative decreasing function. In such solutions the energy density obeys the ultrastiff matter equation of state i.e. ω = 1.  相似文献   

19.
Homogeneous and Isotropic cosmological models of low-energy, string gravitation with loop corrections to the dilaton coupling functions are investigated by methods of the qualitative theory of dynamical systems. An ideal fluid with a barotropic equation of state is considered as the nongravitational source. In the general case of curved models, the cosmological equations are represented in the form of a third-order, autonomous, dynamical system. Phase portraits for different coupling functions are constructed for flat models. The asymptotic behavior of the general solution in limiting regions is investigated. The stabilization of the dilaton is analyzed using the Damour-Polyakov mechanism. Translated from Astrofizika, Vol. 42, No. 1, pp. 117–136, January–March, 1999.  相似文献   

20.
In the standard Friedmann cosmology the black-body radiation spectrum is usually taken (without explicit proof as far as we know) to have the same familiarT 4-form that it has in a flat space. With explicit use of the equation of motion of a quantized massless field propagating in a curved background Robertson-Walker metric we show (for the readily tractable scalar field case) that the assumption is in fact true for an open Universe. For a closed Universe, we find that there is an in principle modification to theT 4-law. Unfortunately, the correction turns out to be too small to be experimentally detectable. In passing, we also obtain a simple derivation for the cosmological red shift of frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号