首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyroblastic garnet schists from northern Samos contain in their matrix the assemblage Ca‐rich garnet + phengite + paragonite ± chloritoid equilibrated at ~530 °C and ~19 kbar during early Tertiary metamorphism. These high‐pressure/low‐temperature (HP‐LT) metapelitic rocks also exhibit mineralogical and microstructural evidence of an older, higher temperature metamorphism. Large, centimetre‐sized Fe‐rich garnet showing growth zoning developed discontinuous, <0.5 mm thick, Ca‐rich and Mn‐poor overgrowths, compositionally matching small (<1 mm) high‐P matrix garnet. Because the discontinuous garnet rims are in textural and chemical equilibrium with Alpine high‐P minerals, the central parts of the garnet porphyroblasts were found to have formed prior to the Tertiary metamorphism. This is supported by electron microprobe U‐Th‐Pb dating of monazite inclusions yielding partly reset Variscan ages between 360 and 160 Ma. Monazite‐xenotime and garnet‐muscovite thermometry applied to inclusions in the pre‐Alpine garnet yielded temperatures of 600–625 °C (at 3–8 kbar). Prismatic Al‐rich pseudomorphs, possibly after kyanite/sillimanite, and inclusions in garnet composed of white K‐Na mica + quartz ± albite ± K feldspar, interpreted as possible replacements of an intermediate K‐Na feldspar, further support Variscan amphibolite facies conditions. The Samos metapelites thus experienced higher temperatures during the Variscan than during Alpine metamorphism. Diffusional relaxation was very limited between pre‐Alpine garnet and Alpine garnet; both were filled with Alpine garnet along overgrowths and fractures. Fluid‐mediated intergranular element transport, enhanced by deformation, appears crucial in transforming the Variscan garnet into a grossular richer composition during Alpine subduction‐zone metamorphism. At such conditions, dissolution–reprecipitation appears to be a much more effective mechanism for modifying garnet compositions than diffusion. Amphibolite facies conditions are typical for Variscan basement relics exposed in central Cycladic and Dodecanese islands as well as in eastern Crete. The Samos metapelites studied comprise a north‐eastern extension of these basement occurrences.  相似文献   

2.
Diffusion modeling of zoning profiles in eclogite garnets from three different tectonic units of Mt. Dabie, UHPM unit, HPM unit and northern Dabie, was used to estimate the relative time span and cooling rates of these rocks. Modeling result for the Huangzhen eclogite garnet shows that the maximal time span for the diffusion-adjustment process is about 22 Ma since the peak-temperature metamorphism, which is the maximum time span from amphibolite facies metamorphism to greenschist facies metamorphism. The Bixiling eclogites had subjected to a cooling process at a rate of - 10℃/Ma from 750℃ to 560℃ during 20 Ma. The second cooling stage of the Raobazhai eclogite following granulite-facies metamorphism is an initial fast cooling process at a rate of about 25℃/Ma and then slowed down gradually. All these belong to a coherent Dabie collision orogen with differences in subduction depth and exhumation/uplifting path.  相似文献   

3.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks.  相似文献   

4.
Abstract For the first time, we apply different geospeedometric models to garnet zoning patterns that were obtained in this study from detailed EMP analyses for garnets from eclogites and granulite in the Dabie‐Sulu orogen. Various zonings of cation diffusion were preserved in the garnets, enabling the acquirement of average cooling rates for the high‐to ultrahigh‐pressure rocks without using geochronological approaches. The coesite‐bearing hot eclogites yield fast cooling rates of about 20 to 30°C/Ma subsequent to peak metamorphic temperatures, whereas the cold eclogite gives a relatively slow cooling rate of 8°C/Ma at its initial exhumation. A very slow cooling rate of <0.3°C/Ma is obtained for the granulite at Huangtuling, suggesting that the granulite may not be involved in the continental deep subduction.  相似文献   

5.
Three monazite generations were observed in garnet-bearing micaschists from the Schobergruppe in the basement to the south of the Tauern Window, Eastern Alps. Low-Y monazite of Variscan age (321?±?14?Ma) and high-Y monazite of Permian age (261?±?18?Ma) are abundant in the mica-rich rock matrix and in the outer domains of large garnet crystals. Pre-Alpine monazite commonly occurs as polyphase grains with low-Y Variscan cores and high-Y Permian rims. Monazite of Eo-Alpine age (112?±?22?Ma) is rarer and was observed as small, partly Y-enriched grains (3?wt. %?Y2O3) in the rock matrix and within garnet. Based on monazite-xenotime thermometry, Y?+?HREE values in monazite indicate minimum crystallization conditions of 500?°C during the Variscan and 650?°C for the Permian and Alpine events, respectively. Garnet zoning and thermobarometric calculations with THERMOCALC 3.21 record an amphibolite facies, high-pressure stage of ~600?°C/13?C16?kbar, followed by a thermal maximum at 650?C700?°C and 6?C9?kbar. The Eo-Alpine age for these two events is supported by inclusions of Cretaceous monazite in the garnet domains used for thermobarometric constraints and through the high growth temperatures of Eo-Alpine monazite, which is consistent with that of the thermal maximum (~700?°C). The age and growth conditions of a few Mn-rich garnet cores, sporadically present within Eo-Alpine garnet, are unclear because inclusions of monazite, plagioclase and biotite necessary for thermobarometric- and age constraints are absent. However, based on monazite thermometry, Permian and Variscan metamorphic conditions were high enough for the growth of pre-Alpine garnet. The formation of Variscan garnet and its later resorption, plus Y-release, would also explain the high Y in Permian monazite, which cannot originate from preexisting Variscan monazite only. Monazite of Variscan, Permian and/or Eo-Alpine ages were also observed in other garnet-bearing micaschists from the Schobergruppe. This suggests that the basement of the Schobergruppe was overprinted by three discrete metamorphic events at conditions of at least lower amphibolite facies. While the Variscan event affected all parts of this basement, the younger events are more pronounced in its structurally lower units.  相似文献   

6.
The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430–400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between ~ 505 and ~ 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet–phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25–27 kbar/680–760 °C for the garnet–phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25–26 kbar/650–700 °C). Metamorphic rims of zircons from the garnet–phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu–Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm–Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction–exhumation cycle.  相似文献   

7.
Kinetic theory allows the calculation of a time scale for metamorphic events using the extent of relaxation of garnet growth zoning along a particular P-T trajectory. Eclogitic garnets from the Kokchetav Massif (Kazakhstan), the Great Caucasus (Russia), and the Yukon-Tanana terrane (Canada) experienced different metamorphic P-T histories and display different types of zoning patterns, which allowed testing of a variety of geospeedometric procedures. In all cases, the preservation of sharp compositional gradients and hence the limited degree of diffusive modification of garnet compositions can be explained if associated tectono-metamorphic processes were of very short duration. Results of diffusion modeling indicate rates of temperature and pressure change on the burial and/or the exhumation path on the order of several hundreds of °C/m.y. and several cm/yr, respectively. These extreme exhumation and cooling rates apply for rocks buried to a depth greater than, for example, 20 km, thus arguing for the existence of contrasted velocity fields for eclogitic block exhumation from deep versus shallow levels of the lithosphere.  相似文献   

8.
We employ garnet isopleth thermobarometry to derive the P–T conditions of Permian and Cretaceous metamorphism in the Wölz crystalline Complex of the Eastern Alps. The successive growth increments of two distinct growth zones of the garnet porphyroblasts from the Wölz Complex indicate garnet growth in the temperature interval of 540°C to 560°C at pressures of 400 to 500 MPa during the Permian and temperatures ranging from 550°C to 570°C at pressures in the range of 700 to 800 MPa during the Cretaceous Eo-Alpine event. Based on diffusion modelling of secondary compositional zoning within the outermost portion of the first garnet growth zone constraints on the timing of the Permian and the Eo-Alpine metamorphic events are derived. We infer that the rocks remained in a temperature interval between 570°C and 610°C over about 10 to 20 Ma during the Permian, whereas the high temperature stage of the Eo-Alpine event only lasted for about 0.2 Ma. Although peak metamorphic temperatures never exceeded 620°C, the prolonged thermal annealing during the Permian produced several 100 µm wide alteration halos in the garnet porphyroblasts and partially erased their thermobarometric memory. Short diffusion profiles which evolved around late stage cracks within the first garnet growth zone constrain the crack formation to have occurred during cooling below about 450°C after the Eo-Alpine event.  相似文献   

9.
Abstract High-pressure-temperature metapelites that occur in close proximity to eclogitized mafic rocks in the southern part of the Gagnon terrane (Parautochthonous Belt, eastern Grenville Province) were investigated in order to constrain depths of burial and P-T paths. Mineral assemblages and partial melting relationships in these metapelites are consistent with peak temperatures in the range between 700 and 800° C. However, growth zoning is apparently well preserved in garnets and only narrow rims (width = 100–500 μm) are obviously affected by diffusional retrograde resetting. Despite uncertainties regarding mineral assemblages and compositions of matrix minerals at early stages of garnet growth, it can be shown that the observed growth zoning profiles of garnets imply increase of both pressure and temperature up to a common maximum at pressures between 1300 and 1600 MPa, and that thermal relaxation did not occur during the initial stages of unloading. On the other hand, calculated retrograde P-T conditions are consistent with steep decompression paths. The inferred 'hair-pin'-shaped P-T path is consistent with independent evidence of rapid, tectonically driven exhumation, resulting in the preservation of growth zoning in garnets from such a high-temperature regime.  相似文献   

10.
Previous studies on the atoll-shaped garnets in ultrahigh-pressure (UHP) metamorphic eclogites from the Dabie orogen, east-central China, suggest a fluid-enhanced overgrowth origin at the onset of exhumation. The atoll-garnets bearing eclogite place better constraints on the timing of the retrograde fluid activity and are a straightforward target to gain insight into the isotopic equilibrium and/or disequilibrium during exhumation. Comprehensive textural, chemical and Lu–Hf geochronological analyses on the atoll garnet-bearing eclogite show that the retrograde fluid activity event likely occurred at ca. 221 Ma. The Lu–Hf age of 221.0?±?2.3 Ma marks the last garnet overgrowth episode during exhumation rather than prograde metamorphism. This somewhat restricted study suggests that dating the prograde-zoning-preserved garnets may bias results towards a particular metamorphic event rather than the prograde timing, as previously thought. The general assumption that larger garnet crystals in metamorphic rocks are older should be made with caution, and it is likely invalid in atoll garnet-bearing metamorphic eclogites because the preliminary garnet cores have been largely consumed. These observations highlight that linking textural and chemical analyses is crucial for interpreting geochronological data.  相似文献   

11.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

12.
Metabasic rocks related to pre-Cambrian protoliths from the lower portion of the deep crust of the Serre (Calabria, southern Italy) contain porphyroblastic garnet up to 5–6 cm in diameter. Garnet forms coronas around the inclusions of clinopyroxene and is in contact with various matrix minerals. Both inner and outer coronas formed under granulite facies conditions after the thermal peak during the Hercynian reworking. Six porphyroblastic garnets (≥1 cm in diameter) from four samples have been dated with the Sm-Nd method to constrain the distinct metamorphic stages and, possibly, to investigate the diffusion of Sm and Nd in garnet. They show in the core major element flat profiles whereas one of these, analyzed for REEs, preserves only a feeble zoning. This suggests that the diffusion rates of REEs are effective at the crystal scale. The apparent Nd ages range from 354 to 88 Ma, without any reproducibility in each and in all rock samples. The oldest age of 354 Ma is interpreted as the primary isotopic signatures linked to prograde metamorphism. The interpretation of younger ages (309, 272, 215, 143 and 88 Ma) requires a detailed discussion about: (i) possible modification of chemical and isotopic composition of the rocks during and after garnet growth, (ii) possible contamination by inclusions in garnet, (iii) inherited isotopic disequilibrium, (iv) new growth or recrystallization of garnet and (v) possible isotopic resetting of large crystals which, in principle, is hampered by the slow diffusion of REE’s in garnet. Some of the Nd ages are similar to U-Pb ages of zircon from the metabasic rocks of deep crustal rocks of the Serre (350, 300 and 280 Ma). This convergence of apparent ages can hardly be considered as simply fortuitous. Thus, since: (i) corona formation was fluid-assisted and (ii) all porphyroblasts were broken up into several fragmented subgrains by sets of fractures resulting in smaller volumes, the volume diffusion and the possible role of high-T fluids on the resetting of Sm-Nd ages are discussed. The calculated ages of 354, 309 and 272 Ma are considered as geologically meaningful and related to the thermal peak and subsequent decompression and cooling stage of the Variscan metamorphism.  相似文献   

13.
Late Variscan granites intruded Brioverian (Upper Proterozoic) and Lower Paleozoic pelitic sequences to the north of the South Armorican shear zone. In the vicinity of the granites, Brioverian garnet micaschists contain pre/syn-S2 assemblages with garnet + staurolite and post-S2 assemblages with staurolite ± andalusite. Andalusite appeared pre/syn- and post-S2 in garnet-free micaschists. The garnets in the Brioverian micaschists are zoned with increasing Mg and decreasing Mn and Ca from core to inner rim. Only poor garnet zonations occur in Paleozoic hornfelses of enclaves in the Rostrenen granite. The results of a microstructurally controlled application of garnet–biotite geothermometers and garnet–plagioclase geobarometers are similar to P–T trends obtained by the Gibbs method of garnet zonation modelling in the system NCFMnMASH. The P–T paths of a pre/syn-S2 regional metamorphism are clockwise between 500–550°C/8 kbar and 700°C/5 kbar, followed by cooling decompression. They contrast with isobaric contact metamorphism between 500 and 700°C at 2.5–3 kbar in Paleozoic hornfelses. This points to a two-stage Variscan metamorphism with a pre-granitic pressure-dominated event in the Brioverian micaschists, followed by Late Variscan contact metamorphism, and suggests the existence of a pre-granitic tectonic boundary between the micaschists and overlying low-grade sequences.  相似文献   

14.
In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhülle (USH) and Lower Schieferhülle, (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67 –0.13 +0.19 mm/million years and 0.88 –0.19 +0.34 mm/million years, respectively, indicating an average growth duration of 5.4±1.7 million years. The duration of growth coupled with the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7 –0.7 +1.2 ×10-14 s-1. Garnet growth in the sample from the USH occurred between 35.4±0.6 and 30±0.8 Ma. The garnet from the LSH grew at a rate of 0.23±0.015 mm/million years between 62±1.5 Ma and 30.2±1.5 Ma. Contemporaneous cessation of garnet growth in both units at 30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that theseP — T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4 –2 +3 mm/year and 2±1 mm/year, respectively.  相似文献   

15.
The Ronda peridotite is a group of lherzolite slabs (1.5 to 2 km thick) in southern Spain. Despite clear evidence that pre-Alpine events affected pre-Permo-Triassic units from the Alborán domain (internal zone of the Betic-Rif Cordillera, Spain, and Morocco), numerous papers continue to emphasize Alpine metamorphic and structural evolution. Here, we evaluate the pre-Cenozoic evolution of the Ronda peridotite by reporting new petrographic and U–Pb SHRIMP zircon dating of meta-sedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain) directly overlying the Ronda peridotite. Field inspection and petrographical study revealed generalized migmatitic textures and a gradual transition mainly defined by garnet content (from ~30 to <3 wt.%) and size (from 1.5 cm to <0.5 mm) in the overlying granulite-gneiss sequence, suggesting that most garnet grew as a consequence of the peridotite emplacement. Garnet shows notable variations in composition and inclusion types, which are interpreted as reflecting different stages of garnet growth. Diamond-bearing garnets are only well-preserved in gneisses from the uppermost part of the sequence, whereas the large garnets from rocks overlying the peridotite mainly record later thermal events. SHRIMP zircon dating indicates two age peaks at 330 ± 9 and 265 ± 4 Ma. The oldest age characterizes rims overgrowing detrital cores and reflects an early Hercynian metamorphism; the younger age characterizes zircon with magmatic oscillatory zoning, reflecting anatexis. On the basis of these data and of previous dating of monazite included in the large garnets, we conclude that the peridotite was emplaced either shortly before or during early Hercynian times, ~330 Ma.  相似文献   

16.

青藏高原腹地羌塘地体中部猫耳山增生杂岩内保留有早古生代变质记录,对研究冈瓦纳大陆北缘的早古生代构造格架和演化具有重要意义。猫耳山石榴角闪岩呈透镜状产出于斜长角闪岩内,主要由石榴石、角闪石、单斜辉石、斜长石、白云母、黝帘石、绿泥石、榍石和钛铁矿组成。石榴角闪岩的全岩地球化学分析表明其具有俯冲带上(SSZ型)蛇绿岩特征,与区域内寒武-奥陶纪蛇绿岩残片一致。根据岩相学、矿物化学、相平衡模拟以及锆石定年结果,得出石榴角闪岩的成因及变质过程如下:(1)石榴角闪岩原岩为~477Ma的特提斯洋蛇绿岩残片;(2)在394~383Ma发生麻粒岩相变质过程,峰期变质温压条件为~900℃、~1.55GPa,矿物组合为石榴石+角闪石+透辉石;(3)早期的折返导致其降温降压至~800℃、~1.0GPa,矿物组合为石榴石+角闪石+透辉石+斜长石;(4)进一步的角闪岩相退变质发生于358~348Ma,矿物组合为角闪石+斜长石+透辉石+钛铁矿,在石榴石周围和港湾处形成斜长石+角闪石的后成合晶结构。石榴角闪岩的P-T-t演化轨迹结合区域蛇绿岩和岩浆岩记录,指示早古生代特提斯洋壳俯冲、泥盆纪特提斯洋弧后扩张和石炭纪特提斯洋内岛弧增生的过程。

  相似文献   

17.
The Flinton Group is a greenschist to upper amphibolite facies package of metasediments in southeastern Ontario that was metamorphosed during the Ottawan Orogeny. Thermodynamic modeling of metapelitic mineral assemblages suggests an increase in peak conditions of metamorphism across the 40 km wide study area from 3.5 to 7.9 kbar and 540 to 715 °C. Garnet isopleth thermobarometry applied to the cores of compositionally zoned porphyroblasts reveals remarkably similar P-T conditions of initial crystallization at approximately 3.7–4.0 kbar and 512–520 °C, corresponding to a relatively high geothermal gradient of ca. 34–45 °C km?1. It is inferred from modeling and reaction textures that metamorphism was along Barrovian P-T paths. Major and trace element zoning in garnet from one sample records a complex growth history as evidenced by major and trace element zoning and the distribution of xenotime, allanite and monazite inclusions. High-resolution (6 μm) LA-ICP-MS U-Pb geochronology performed on monazite in the rock matrix and included in the outer 150 μm of garnet rim-ward of a Y annulus revealed an age of 976?±?4 Ma. The age is interpreted to reflect monazite growth at the expense of allanite and apatite late in garnet’s growth history over the P-T interval 4.5–6.8 kbar and 540–640 °C. This new age estimate for near peak metamorphism fits well into the regional framework but is significantly younger than previously reported ages for Ottawan metamorphism. Based on microstructures this new age suggests that compressional tectonics were operating much later in the history of the Grenville of southeastern Ontario than previously thought.  相似文献   

18.
ABSTRACT Ion probe traverses across garnets from peridotites of the Caledonides of Norway and the Variscides of Poland show zoning patterns for Y, V, Zr, Cr, Ti and the REE. The complexly zoned patterns of garnets from the Bystrzyca Górna peridotite, Poland, are interpreted in terms of a changing P–T history (isobaric cooling followed by decompression and cooling). Weak rimward gradients in REE concentrations in garnets from the Almklovdalen and Sandvika peridotites, Norway, may be relicts of the original growth history of the garnets, but the nearly flat Y, V, Zr, Cr and Ti profiles from the same garnets imply a later period of near-homogenization at uniform P–T. Crushed garnet separates from each body were separated into three or more fractions on the assumption that density and magnetic susceptibility vary with Fe/Mg ratio, and Fe/Mg ratios change from garnet core to rim. Sm-Nd garnet–clinopyroxene ‘ages’ were determined for each fraction to determine whether they are also zoned. Four garnet fractions from the Góry Sowie peridotite give nearly the same ages (397–412 Ma) that are believed to span the interval of garnet growth. Garnet fractions from the Norwegian peridotites define scattered ages (816–1350 Ma) that are suspect, but hint at a Sveconorwegian equilibration event. The data indicate the Variscan and Norwegian peridotites had different histories, despite superficial mineralogical and tectonic similarities. Norwegian garnet peridotites had a long pre-Caledonian history and were extracted from a relatively cold mantle whereas the Variscan garnet peridotites had a comparatively short pre- or Eo-Variscan history and were extracted from a hot mantle.  相似文献   

19.
Garnet in metapelites from the Wölz Complex of the Austroalpine crystalline basement east of the Tauern Window characteristically consists of two growth phases, which preserve a comprehensive record of the geothermal history during polymetamorphism. From numerical modelling of garnet formation, detailed information on the pressure–temperature–time (P–T–t) evolution during prograde metamorphism is obtained. In that respect, the combined influences of chemical fractionation associated with garnet growth, modification of the original growth zoning through intragranular diffusion and the nucleation history on the chemical zoning of garnet as P and T change during growth are considered. The concentric chemical zoning observed in garnet and the homogenous rock matrix, which is devoid of chemical segregation, render the simulation of garnet growth through successive equilibrium states reliable. Whereas the first growth phase of garnet was formed at isobaric conditions of ~3.8 kbar at low heating/cooling rates, the second growth phase grew along a Barrovian P–T path marked with a thermal peak of ~625°C at ~10 kbar and a maximum in P of ~10.4 kbar at ~610°C. For the heating rate during the growth of the second phase of garnet, average rates faster than 50°C Ma?1 are obtained. From geochronological investigations the first growth phase of garnet from the Wölz Complex pertains to the Permian metamorphic event. The second growth phase grew in the course of Eo-Alpine metamorphism during the Cretaceous.  相似文献   

20.
Detrital zircon U–Pb age distributions derived from samples representing ancient or relatively young large-scale continental drainage networks are commonly taken to reflect the geochronological evolution of the tapped continental area. Here, we present detrital zircon U–Pb ages and associated heavy mineral data from Pleistocene Rhine River Middle Terrace sands and equivalents between the Swiss–German border and Cologne in order to test the commonly assumed Alpine provenance of the material. Samples from eight localities were analyzed for their heavy mineral assemblages. Detrital zircon U–Pb ages were determined by laser ablation inductively coupled mass spectrometry on selected samples from five locations along the Rhine River. The zircon age populations of all samples show a similar distribution, their main peaks being between 300 and 500 Ma. Minor age populations are recognized at 570 and 1,070 Ma. The 300–400 Ma maximum reflects the Variscan basement drained by or recycled into the Rhine River and its tributaries. The 400–500 Ma peak with predominantly Early Silurian ages points to Baltica or to the mid-German crystalline rise as original sources. One distinct peak at c. 570 Ma probably represents input from Cadomian terranes. The Precambrian U–Pb ages are compatible with derivation from sources in Baltica and in northern Gondwana. The heavy mineral populations of Middle Terrace sands and equivalents are characterized to a variable extend by garnet, epidote, and green hornblende. This association is often referred to as the Alpine spectrum and is considered to be indicative of an Alpine provenance. However, hornblende, epidote, and garnet are dominant heavy minerals of collisional orogens in general and may also be derived from Variscan and Caledonian units or from intermittent storage units. A remarkable feature of the detrital zircon age distribution in the Rhine River sediments from the Swiss–German border to Cologne is the absence of ages younger than 200 Ma and in particular of any ages reflecting the Alpine orogeny between c. 100 and 35 Ma. Sediments from rivers draining the equally collisional Himalaya orogen contain detrital zircons as young as 20 Ma. Our results question the assumption that Pleistocene Rhine River sediments were directly derived from the Alps. The lag time between the formation and deposition age of the youngest zircon in the studied Pleistocene Rhine River deposits is 200 Ma. Together with the absence of Alpine zircon ages, this stresses that detrital zircon age data from ancient sedimentary units found in poorly understood tectonic or paleogeographic settings need to be interpreted with great care, one could miss an entire orogenic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号