首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A differential equation is obtained to describe the concentration of passive admixtures (water vapor, sensible heat, pollutants, CO2, etc.) of turbulent flow inside a dense and uniform vegetational canopy. The profiles of eddy diffusivity, wind speed and shear stress are assumed to be exponential decay functions of depth below the top of the canopy. This equation is solved for the case of a vegetation with constant concentration of the admixture at the foliage surfaces. The solution is used to formulate bulk mass or heat transfer coefficients, which can be applied to practical problems involving surfaces covered with a vegetation or with similar porous or fibrous roughness elements. The results are shown to be consistent with experimental data presented by Chamberlain (1966), Garratt and Hicks (1973) and Garratt (1978). Calculations with the model illustrate that, as compared to its behavior over surfaces with bluff roughness elements, ln(z 0/ z oc ) (where z 0 is the momentum roughness and Z oc the scalar roughness) for permeable roughness elements is relatively insensitive to u * and practically independent of z 0.  相似文献   

2.
For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.  相似文献   

3.
The roughness length for momentum (z0m), zero-plane displacementheight (d), and roughness length for heat (z0h) are importantparameters used to estimate land-atmosphere energy exchange. Although many different approaches have been developed to parameterizemomentum and heat transfer, existing parameterizations generally utilizehighly simplified representations of vegetation structure. Further, a mismatch exists between the treatments used for momentum and heat exchange and those used for radiative energy exchanges. In this paper, parameterizations are developed to estimate z0m, d, and z0h for forested regimes using information related to tree crown density and structure. The parameterizations provide realistic representationfor the vertical distribution of foliage within canopies, and include explicit treatment for the effects of the canopy roughness sublayer and leaf drag on momentum exchange. The proposed parameterizationsare able to realistically account for site-to-site differences in roughness lengths that arise from canopy structural properties.Comparisons between model predictions and field measurements show good agreement, suggesting that the proposed parameterizations capture the most important factors influencing turbulent exchange of momentumand heat over forests.  相似文献   

4.
Effects of Wall Heating on Flow Characteristics in a Street Canyon   总被引:5,自引:4,他引:1  
We develop a large-eddy simulation (LES) model based on a meteorological numerical model for a real scale street-canyon flow with rough building facets heated by a given temperature. The model is applied to a canyon with the aspect ratio of unity for two idealized heating scenarios: (1) the roof and the entire upstream wall are heated, named as ‘assisting cases’, and (2) the roof and the entire downstream wall are heated, named as ‘opposing cases’. These facets were heated up to 15 K above the air temperature. A wall function for temperature is proposed for a rough facet with an assumption that the thermal roughness length, z 0T, is much smaller than the aerodynamic roughness length, z 0. It is demonstrated that the sensible heat flux and canyon-air temperature are significantly influenced by the near-facet process that is parametrized by z 0T as the primary factor; other processes such as in-canyon mixing and roof-level exchange are secondary. This new finding strongly suggests that it is vital to choose an appropriate value of z 0T in a numerical simulation of street-canyon flows with the facet-air exchange processes of heat or any scalar. The finding also raises an awareness of the demand for carefully designed laboratory or field experiments of quantifying z 0T values for various urban surfaces. For the opposing cases, an unsteady penetrating narrow updraft zone appears occasionally along the heated wall and this feature is consistent field observations. The unique result indicates the superior capability of LES. The results of this study can be used to guide the parametrization of turbulent processes inside the urban canopy layer.  相似文献   

5.
A method for the determination of the zero-plane displacement, d, and roughness length, z 0, for tall vegetation is described. A new relationship between d and z 0 is developed by imposing the condition of mass conservation on the logarithmic wind profile. Further, d and z 0 can be evaluated directly if independent measurements of friction velocity are available in addition to wind profile measurements. The proposed method takes into account the existence of a transition layer immediately above the vegetation where the logarithmic wind profile law is not valid. Only one level of wind speed measurements is necessary within the inertial sub-layer.The method is applied to wind profile and eddy correlation measurements taken in and above an 18.5 m pine forest to yield d = 12.7 m and z 0 = 1.28 m. The choice of height for the upper level of measurement and problems with measuring canopy flow are discussed.Work carried out while on leave at the Institute of Hydrology.  相似文献   

6.
Vertical profiles of wind speed, temperature and humidity were used to estimate the roughness lengths for momentum (z 0), heat (z H ) and moisture (z Q) over smooth ice and snow surfaces. The profile-measurements were performed in the vicinity of a blue ice field in Queen Maud Land, East Antarctica. The values ofz 0 over ice (3·10–6 m) seem to be the smallest ever obtained over permanent, natural surfaces. The settling of snow on the ice and the loss of momentum at saltating snow particles serve as momentum dissipating processes during snow-drift events, expressed as a strong dependence ofz 0 on u#.The scalar roughness lengths and surface temperature can be evaluated from the temperature and humidity profile measurements if the ratioz H /z Q is specified. This new method circumvents the difficult measurement of surface temperature. The scalar roughness lengths seem to be approximately equal toz0 for a large range of low roughness Reynolds numbers, despite the frequent occurrence of drifting snow. Possible reasons for this agreement with theory of non-saltating flow are discussed.  相似文献   

7.
Surface energy budget investigations of a range of agricultural surfaces in France and the African Sahel demonstrate consistent linear relationships between daily totals of sensible heat flux (H d) and the difference between a once-a-day radiative measurement of surface temperature and the maximum air temperature at a height of 2 m. Surface temperature was measured with nadir-viewing radiothermometers near 1400 h (LST). The average residual standard error in the estimate ofH d was 0.6 mm of equivalent evaporation.An equation for the daily sensible heat flux (H d) having a form analogous to Dalton's evaporation formula was derived from surface energy budget considerations. This equation discriminates well between relatively homogeneous, low-cover surfaces where surface exchange characteristics can be assumed to be simple fractions of the height of the roughness elements. By contrast, data from two other crops with discontinuous plant cover suggest a much reduced sensitivity to canopy architecture. This result is not unreasonable if scalar transport were controlled by the thermal conductivity of a layer of still air close to ground level which is sheltered by the plant canopy. There is scope for further experimental and theoretical work on this matter.  相似文献   

8.
Roughness length for heat over an urban canopy   总被引:1,自引:0,他引:1  
The roughness length for heat zT was evaluated over an urban canopy, using the measured sensible heat flux and radiometric temperature. To overcome thermal heterogeneity in the urban area, the measured radiometric temperature was transformed into the equivalent temperature of an upward longwave radiation flux. The equivalent temperature was found to provide an effective parameterization of the radiometric temperature. The daytime average of the resulting ln(zT/z0) was 10, where z0 is the aerodynamic roughness length. This result generally agrees with previous studies; however, the anthropogenic heat is a large uncertainty, which could cause an error at least 240% in zT.  相似文献   

9.
Flux parameters, zero-plane displancement height and roughness length of a forest canopy are determined taking into consideration a transition layer and atmospheric diabatic influences. The present study, unlike previous studies by DeBruin and Moore (1985) and Lo (1990) that accounted for the velocity profile alone, make use of information from both wind and temperature profiles in formulating the governing equations. However, only the top level measurement is assumed to be within the logarithmic regime. In addition to the mass conservation principle (e.g., Lo, 1990; DeBruin and Moore, 1985), an analytic relationship between the Monin-Obukhov length and the bulk Richardson number is employed as the closure equation for the governing system.The present method is applied to profile measurements taken at Camp Borden (den Hartog and Neumann, 1984) in and above a forest canopy with mean crown height of about 18.5 m. Profile data under neutral or near-neutral conditions yieldedd=12.69 m andz 0=0.97 m, which are realistic values. In general,z 0 increases slightly with increasing wind yet remains relatively constant with respect to small variation of stabilities. On the other hand, increases of wind speed reduced values of displacement height,d, by as much as 50%. The influence, if any, of stability ond, however, is not clear from the results of the present study. The validity of using profile data of limited height is also carefully examined. At least for neutral or near-neutral stabilities, the present method can yield realistic results even though the profile heights are substantially below the transition layer height suggested by Garratt (1978).  相似文献   

10.
Using a previous treatment of drag and drag partition on rough surfaces, simple analytic expressions are derived for the roughness length (z 0) and zero-plane displacement (d) of vegetated surfaces, as functions of canopy height (h) and area index (). The resulting expressions provide a good fit to numerous field and wind tunnel data, and are suitable for applications such as surface parameterisations in atmospheric models.  相似文献   

11.
A wind-tunnel experiment has been used to investigate momentum absorption by rough surfaces with sparse random and clustered distributions of roughness elements. An unusual (though longstanding) method was used to measure the boundary-layer depth δ and friction velocity u * and thence to infer the functional relationship z 0/h = f(λ) between the normalised roughness length z 0/ h and the roughness density λ (where z 0 is the roughness length and h the mean height of the roughness elements). The method for finding u * is based on fitting the velocity defect in the outer layer to a functional form for the dimensionless velocity-defect profile in a canonical zero-pressure-gradient boundary layer. For the conditions investigated here, involving boundary layers over sparse roughness with strong local heterogeneity, this velocity-defect-law method is found to be more robust than several alternative methods for finding u * (uw covariance, momentum integral and slope of the logarithmic velocity profile).The experimental results show that, (1) there is general agreement in the relationship z 0/h = f(λ) between the present experiment with random arrays and other wind-tunnel experiments with regular arrays; (2) the main effect of clustering is to increase the scatter in the z 0/h = f(λ) relationship, through increased local horizontal heterogeneity; (3) this scatter obscures any trend in the z 0/h = f(λ) relationship in response to clustering; and (4) the agreement between the body of wind-tunnel data (taken as a whole) and field data is good, though with scatter for which it is likely that a major contribution stems from local horizontal heterogeneity in the field.  相似文献   

12.
Aerodynamic roughness of vegetated surfaces   总被引:2,自引:0,他引:2  
Available experimental results indicate that as the density of roughness elements over a horizontally homogeneous surface is varied, the roughness length, z 0, varies in a manner that exhibits a maximum at intermediate density values. In an attempt to explain this behaviour, the available analytical solutions for the wind profile inside dense homogeneous canopies were reviewed. The review indicated that the variation of z 0 with density depends on the interrelationship between the leaf density, a, and the mixing length, l. In view of this finding, a numerical model was devised based on a simple rule for constructing mixing-length profiles in the canopy. The rule states that the actual value of l is the maximum possible under the two constraints: l l i and ¦dl/dz¦ k, where k is the von Karman constant and the intrinsic mixing length, l i, is a function of the local internal structure of the canopy. The model which ensures a smooth transition from dense to thin canopy, was used to reproduce the observed maximum of z 0. The model is also capable of handling vertically non-homogeneous canopies.  相似文献   

13.
Mean wind velocity profiles were measured by means of radio-windsondes over the Landes region in southwestern France, which consists primarily of pine forests with scattered villages and clearings with various crops. Analysis of neutral profiles indicated the existence of a logarithmic layer between approximately zd 0 = 67(±18)z 0 and 128(+-32)z 0 (z is the height above the ground, z 0 the surface roughness and d 0 the displacement height). The upper limit can also be given as zd 0 = 0.33 (±0.18)h, where h is the height of the bottom of the inversion. The profiles showed that the surface roughness of this terrain is around 1.2 m and the displacement height 6.0 m. Shear stresses derived from the profiles were in good agreement with those obtained just above the forest canopy at a nearby location with the eddy correlation method by a team from the Institute of Hydrology (Wallingford, England).  相似文献   

14.
Summary In this paper, we evaluate the applicability of flux-gradient relationships for momentum and heat for urban boundary layers within the Monin-Obukhov similarity (MOS) theory framework. Although the theory is widely used for smooth wall boundary layers, it is not known how well the theory works for urban layers. To address this problem, we measured the vertical profiles of wind velocity, air temperature, and fluxes of heat and momentum over a residential area and compared the results to theory. The measurements were done above an urban canopy whose mean height zh is 7.3 m. 3-D sonic anemometers and fine wire thermocouples were installed at 4 heights in the region 1.5zh < z < 4zh. We found the following: (1) The non-dimensional horizontal wind speed has good agreement with the stratified logarithmic profile predicted using the semi-empirical Monin-Obukov similarity (MOS) function, when it was scaled by the surface friction velocity that is derived from the shear stress extrapolated to the roof-top level. (2) The scaled gradient of horizontal wind speed followed a conventional semi-empirical function for a flat surface at a level (z/zh = 2.9), whereas, in the vicinity of the canopy height was larger than the commonly-used empirical relationship. (3) The potential temperature profile above the canopy shows dependency on the atmospheric stability and the scaled gradient of temperature is in good agreement with a conventional shear function for heat. In the case of heat, the dependency on height was not found. (4) The flux-gradient relationship for momentum and heat in the region 1.5zh < z < 4zh was rather similar to that for flat surfaces than that for vegetated canopies.  相似文献   

15.
The spatial variability of both turbulent flow statistics in the roughness sublayer (RSL) and temperature profiles within and above the canopy layer (CL) were investigated experimentally in a densely built-up residential area in Tokyo, Japan. Using five towers with measuring devices, each tower isolated from the others by at least 200 m, we collected high-frequency measurements of velocity and temperature at a height z=1.8 z H, where z H, the mean building height in the area, is 7.3 m. Also, temperature profiles were measured from z=0.4 to 1.8 z H. The ‘areal mean’ geometric parameters that were obtained for the areas within 200 m of each tower were fairly homogeneous among the tower sites. The main results are as follows: (1) The spatial variability of all RSL turbulent statistics, except the sensible heat flux, was comparable to that reported in a pine forest. Also, the variability decreased with increasing friction velocity. (2) The spatial variability of the RSL sensible heat flux was larger than that reported in a pine forest. Also, the variability depended on the time of the day and became larger in the morning. The difference among the sites was well related to the areal fraction of vegetation. (3) The spatial variability of the CL temperature profile depended on the time of the day and became larger in the morning. Nevertheless, the spatial standard deviation of CL temperature was always below 0.7 K. (4) It is suggested that the “warming-up” process in the morning when heat storage is dominant increases the spatial variation of RSL sensible heat flux and CL temperature according to the local properties around each tower and the variation decreases once there is further convective mixing in the midday  相似文献   

16.
Field And Wind-Tunnel Studies Of Aerodynamic Roughness Length   总被引:3,自引:0,他引:3  
The aerodynamic roughness length (z0) values of three Gobi desert surfaces were obtained by measurement of the boundary-layer wind profile in the field. To clarify the factors affecting the Gobi surface aerodynamic roughness length, a wind-tunnel experiment was conducted. The wind-tunnel simulation shows that z0 values increase with increasingsize and coverage of roughness elements. Especially, the shape and height of roughnesselements are more important than other factors in affecting roughness length. The roughness length increases with decreasing values of the geometric parameter (the ratio of element horizontal surface area to height, ) of roughness elements. But at a higher free stream velocity, the height is more important than the shape in affecting roughness length.  相似文献   

17.
Based on the momentum flux–wind profile relationship of the Monin–Obukhov Similarity (MOS) theory, the observational data from the urban boundary layer field campaign in Nanjing are used to calculate the friction velocity ( $ {u_*} $ ) at the top of the urban canopy and the calculated results are evaluated. The urban surface roughness parameters (the roughness length z 0 and zero-plane displacement height z d) are estimated with the Ba method (Bottema’s morphological method). Two different regimes are employed for the calculations. In the homogeneous approach, z 0 and z d are averagely derived from the surface elements in the whole study area; while in the heterogeneous approach, z 0 and z d are locally derived from the surface elements in the corresponding upwind fetches (or source areas). The calculated friction velocities are compared to the measurement data. The results show that the calculated friction velocities from the heterogeneous approach are in better agreement with the observed values than those from the homogeneous approach are. This study implies that the local roughness parameters can properly represent the dynamical heterogeneity of urban surface, and its application can significantly improve the performance of parameterizations based on the MOS theory in the urban roughness sublayer.  相似文献   

18.
A numerical model of airflow in the lowest 50–100 m of the atmosphere above changes in surface roughness and temperature or heat flux has been developed based on boundary layer approximations, the Businger-Dyer hypotheses for the non-dimensional wind shear and heat flux and a mixing length hypothesis.Results have been obtained for several situations, in particular, airflow with neutral upstream conditions encountering a step change in surface temperature or heat flux with no roughness change. In these cases large increases in shear stress at the outer edge of the internal boundary layer are predicted. The case of unstable upstream flow encountering a step change to zero heat flux is also considered.Two situations that may be encountered near the shores of the Great Lakes are considered.Notation B Businger-Dyer constant (= 16.0) in form for M, H - c p Specific heat at constant pressure - g Acceleration due to gravity - H Upward vertical heat flux - H 0 , H 1 Surface heat fluxes for x < 0, x 0 - k von Kármán's constant ( = 0.4) - l Mixing length - L Monin-Obukhov length - L 0 Upstream value of L - m Ratio of roughness lengths (= z 1/z 0) - RL * Non-dimensional parameter, see Equations (20, 22 and 24) - RL 1 * Same as RL * but with z 1 scaling (= mRL *) - T Scaled temperature - T 0 (z) Upstream temperature profile - u 0, u 1(x) Surface friction velocities for x < 0, x 0 - U, W Horizontal and vertical mean velocities - U 0 (z) Upstream velocity profile - x, z Horizontal and vertical coordinates - z i Local roughness length  相似文献   

19.
Aerodynamic roughness over an inhomogeneous ground surface   总被引:4,自引:0,他引:4  
The aerodynamic roughness parameter z 0 over inhomogeneous ground surfaces, such as cities, rural towns and so on, is determined by analyzing the wind data at AMeDAS observatories in the Tohoku and Kanto districts of Japan, by making use of Rossby number similarity theory. It is found that the aerodynamic roughness parameter is proportional to the average size of the roughness elements.A practical method of estimating the aerodynamic roughness parameter over an extensive area with various inhomogeneities is developed. In this method, the Digital National Land Information data bank is employed. As an example, the roughness parameter distribution around Tsukuba Academic City is presented.  相似文献   

20.
The surface flux calculation method proposed by Louis (1979) is extended by allowing momentum and heat to have different roughness lengths (z 0 andz T respectively). Our approach is to extend the traditional analysis by a more careful consideration of potential temperature structure near the surface. This consideration leads to a redefinition of the bulk Richardson number. For bulk transfer coefficients, our method shows a significant improvement over the original Louis method when compared with the theoretical surface-layer model applied to rough surfaces. Numerical experiments simulating sea breezes in 2D show that our extension is crucially important in simulating light wind and low humidity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号