共查询到20条相似文献,搜索用时 15 毫秒
1.
Batsuren Dorjsuren Denghua Yan Hao Wang Sonomdagva Chonokhuu Altanbold Enkhbold Davaadorj Davaasuren Abel Girma Asaminew Abiyu Lanshu Jing Mohammed Gedefaw 《Environmental Earth Sciences》2018,77(20):725
Land cover and vegetation in Lake Baikal basin (LBB) are considered to be highly susceptible to climate change. However, there is less information on the change trends in both climate and land cover in LBB and thus less understanding of the watershed sensitivity and adaptability to climate change. Here we identified the spatial and temporal patterns of changes in climate (from 1979 to 2016), land cover, and vegetation (from 2000 to 2010) in the LBB. During the past 40 years, there was a little increase in precipitation while air temperature has increased by 1.4 °C. During the past 10 years, land cover has changed significantly. Herein grassland, water bodies, permanent snow, and ice decreased by 485.40 km2, 161.55 km2 and 2.83 km2, respectively. However, forest and wetland increased by 111.40 km2 and 202.90 km2, respectively. About 83.67 km2 area of water bodies has been converted into the wetland. Also, there was a significant change in Normalized Difference Vegetation Index (NDVI), the NDVI maximum value was 1 in 2000, decreased to 0.9 in 2010. Evidently, it was in the mountainous areas and in the river basin that the vegetation shifted. Our findings have implications for predicting the safety of water resources and water eco-environment in LBB under global change. 相似文献
2.
《Russian Geology and Geophysics》2007,48(4):371-377
We report results of bottom temperature monitoring of 2003–2004 in the deepwater South Baikal basin (Lake Baikal) near active gas-fluid methane vents at lake depths of 1020 and 1350 m. Sediments and water temperatures were measured using an autonomous temperature recorder designed at the Institute of Geophysics (Novosibirsk). Experiments implied short-duration recording and pioneering continuous 350 day-long monitoring near the Staryi vent. Measurements within a 1 m thick layer above and below the bottom showed notable variations in water (up to 0.07 °C) and sediment temperatures and in geothermal gradient. The long temperature records include a relatively steady period (mid-June 2003-early February 2004) with smooth temperature variations (especially in sediments) and two transient unsteady periods. The steady season is the best time for heat flow studies in the South Baikal basin. The 0.04–0.05 °C drop in bottom water temperature during the unsteady periods may result from intrusion of cold surface water. A positive temperature anomaly of ∼0.04 °C recorded in April 2003 may be caused, among other reasons, by active gas venting. 相似文献
3.
M. N. Shimaraev R. Yu. Gnatovskii V. V. Blinov V. G. Ivanov 《Doklady Earth Sciences》2011,438(1):652-655
The patterns of renewal of bottom waters in Lake Baikal under the influence of deep convection and intrusion of cold waters
have been considered based on the data of temperature surveys of Lake Baikal conducted in 1993–2009. The volumes of the cold
bottom layer with the maximums of 200–470 km3 in individual years and the values of its total cooling (−20–60 × 109 MJ) have been determined for South, Middle, and North Baikal. The renewal process is asynchronous and proceeds with different
activity in these parts of the lake, which indicates that the mechanisms that cause deep convection in the context of the
great latitudinal length and differences in the climate and hydrological processes manifest themselves regionally. The volume
of intrusions has been determined. Its average value for the period was higher in South Baikal (20 km3) than in Middle Baikal (9.8 km3) and North Baikal (8.6 km3). The volume of the intrusions in these parts of the lake was 30–70 km3 in some years. 相似文献
4.
5.
6.
7.
N. G. Granin I. B. Mizandrontsev A. I. Obzhirov O. F. Vereshchagina R. Yu. Gnatovskii A. A. Zhdanov 《Doklady Earth Sciences》2013,451(1):784-786
The rate of aerobic oxidation of methane was calculated based on average profiles of the tritiumhelium age of the Baikal waters and concentrations of the dissolved methane in the water column. In the deep lake zone (>200 m), the intensity of oxidation vertically decreases and is (2–0.3) × 10?2 nl CH4l?1 days?1 in southern and central Baikal and (2.8–1.0) × 10?2 nl CH4 l?1 days?1 in northern Baikal. The effective coefficient of the oxidation rate in the lake depressions is 3.6 × 10?4, 3.3 × 10?4, and 3.7 × 10?4 days?1, respectively. At current methane concentrations in the water column, about 80 t of methane is oxidized per year. Oxidation of the dissolved methane in the water column was estimated at a possible increase of its concentration. 相似文献
8.
9.
10.
11.
Koji Shichi Hikaru Takahara Sergey K. Krivonogov Elena V. Bezrukova Kenji Kashiwaya Akihide Takehara Toshio Nakamura 《Quaternary International》2009,205(1-2):98
Climatically driven Late Pleistocene and Holocene vegetation changes were reconstructed based on pollen records from the sediments of Lake Kotokel and Cheremushka Bog, located on the eastern shore of Lake Baikal. The described paleoenvironmental record has higher resolution than records collected from Lake Baikal and unites individual events identified in prior studies of bottom and onshore cores. Remarkable shifts in landscapes and expansions of index plants are as follows. Forest tundra and/or forest steppe landscape with birch, spruce, Artemisia, and Poaceae prevailed at ca. 50–25 14C kyr BP. Tundra and/or steppe vegetation dominated by Artemisia and Poaceae was typical for the Last Glacial Maximum. The expansion of shrub birch and willow occurred at ca. 15.5 14C kyr BP. Two peaks of spruce expansion at ca. 47.5–42.4 14C kyr BP (Karginian time) and at ca. 14.5–13 ka (Bølling-Allerød warm intervals) suggest that the condition were more humid than today. A slight increase in Artemisia at ca. 11–10.5 14C kyr BP (13–12 ka) was indicative of the Younger Dryas event. An expansion of birch forests with fir at ca. 12–6.4 ka suggests higher humidity. The currently dominant Scots and Siberian pine forests with birch expanded since 6.4 ka. 相似文献
12.
13.
14.
Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed 总被引:1,自引:0,他引:1
Alexander A. Prokopenko Galina K. Khursevich Mikhail I. Kuzmin Douglas F. Williams Nataliya V. Kulagina Anna A. Abzaeva 《Quaternary Research》2007,68(1):2-17
Here we discuss paleoenvironmental evolution in the Baikal region during the Holocene using new records of aquatic (diatom) and terrestrial vegetation changes from Hovsgol, Mongolia's largest and deepest lake. We reconcile previous contradictory Baikal timescales by constraining reservoir corrections of AMS dates on bulk sedimentary organic carbon. Synthesis of the Holocene records in the Baikal watershed reveals a northward progression in landscape/vegetation changes and an anti-phase behavior of diatom and biogenic silica proxies in neighboring rift lakes. In Lake Baikal, these proxies appear to be responsive to annual temperature increases after 6 ka, whereas in Lake Hovsgol they respond to higher precipitation/runoff from 11 to 7 ka. Unlike around Lake Baikal, warmer summers between 6 and 3.5 ka resulted in the decline, not expansion, of forest vegetation around Lake Hovsgol, apparently as a result of higher soil temperatures and lower moisture availability. The regional climatic proxy data are consistent with a series of 500-yr time slice Holocene GCM simulations for continental Eurasia. Our results allow reevaluation of the concepts of ‘the Holocene optimum’ and a ‘maximum of the Asian summer monsoon’, as applied to paleoclimate records from continental Asia. 相似文献
15.
Doklady Earth Sciences - The concentration of polycyclic aromatic hydrocarbons in the water of Lake Baikal is estimated. The published data on the composition of polycyclic aromatic hydrocarbons in... 相似文献
16.
Atsushi Urabe Masaaki Tateishi Hirokazu Matsuoka Alexsander Dmytriev 《Quaternary Research》2004,62(2):214-222
Lake-level changes inferred from seismic surveying and core sampling of the floor of Lake Baikal near the Selenga River delta can be used to constrain regional climatic history and appear to be correlated to global climate changes represented by marine oxygen isotope stages (MIS). The reflection pattern and correlation to the isotope stages indicate that the topset and progradational foreset sediments of the deltas formed during periods of stable lake levels and warm climatic conditions. During warm stages, the lake level was high, and during cold stages it was low. The drop in the lake level due to cooling from MIS 5 through MIS 4 is estimated to be 33-38 m; from MIS 3 through MIS 2, it fell an additional 11-15 m. Because the lake level is chiefly controlled by evaporation and river input, we infer that more water was supplied to Lake Baikal during warm stages. 相似文献
17.
18.
19.
位于大兴安岭中段的月亮湖地处季风/非季风影响过渡地带,其沉积岩心下部886~546 cm的炭屑记录揭示了末次冰期晚期到全新世早期(20.9~10.8 cal.ka B.P.)的古气候演化历史,反映了东亚季风对研究区气候的影响。研究区炭屑浓度的变化主要由可供燃烧的生物量决定,生长在气候温暖时期的森林草原能够提供更多可供燃烧的生物量。在同一植被类型的条件下,气候寒冷湿润时炭屑浓度低,气候温暖干旱时炭屑浓度高。20.9~18.0 cal.ka B.P.炭屑浓度较低, 气候寒冷偏干,18.0~15.3 cal.ka B.P.炭屑浓度最低,气候寒冷湿润,15.3~14.4 cal.ka B.P.炭屑浓度增高,气候开始向温暖的方向发展,14.4~11.8 cal.ka B.P.炭屑浓度快速变化,气候也经历了一系列的快速变化,11.8~10.8 cal.ka B.P.炭屑浓度总体较高,气候温暖湿润。<50 μm的炭屑浓度指示了区域火演化的历史, >50 μm的炭屑则反映了当地野火发生的状况。 相似文献
20.
Eutrophication processes have been recorded in many world’s freshwater reservoirs, which are sources of drinking water. More and more investigations show that global warming is the main natural factor that causes eutrophication. In recent years, signs of eutrophication have also been recorded in Lake Baikal containing 20% of the world’s freshwater reserves. Therefore, we performed the first comprehensive analysis of long-term changes in climatic parameters capable to provoke negative changes in the shallow zone. The largest number of anomalies of climatic indices has been recorded in the 21st century. Moreover, the current decade has been the most favorable for the emergence of negative processes in the lake (outbreak of the mass growth of algae and aquatic vegetation, rotting of their remains at the bottom and on the shores of the lake, changes in the structure and zoning of biocoenoses, etc.). The main natural conditions favoring the emergence of negative signs are elevated temperatures of the air and lake shore water, reduced amount of precipitation, reduced inflow of river waters into Baikal and lowering of its water level, low-water season, and weakening of wind currents, water exchange processes, and, as a result, water self-purification. In the period of continuing global warming, it is necessary to study the climate effect on the processes in the shallow zone and to carry out long-term monitoring for elucidation of recent and expected changes in the ecological state of Lake Baikal and for their valid interpretation. 相似文献