首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An airborne laser scanner can identify shallow landslides even when they are only several meters in diameter and are hidden by vegetation, if the vegetation is coniferous or deciduous trees in a season with fewer leaves. We used an airborne laser scanner to survey an area of the 1998 Fukushima disaster, during which more than 1,000 shallow landslides occurred on slopes of vapor-phase crystallized ignimbrite overlain by permeable pyroclastics. We identified landslides that have occurred at the 1998 event and also previous landslides that were hidden by vegetation. The landslide density of slopes steeper than 20° was 117 landslides/km2 before the 1998 disaster. This event increased the density by 233 landslides/km2 indicating that this area is highly susceptible to shallow landsliding.  相似文献   

2.
Large deep-seated landslides can be reactivated during intense events, and they can evolve into destructive failures. They are generally difficult to recognize in the field, especially when they develop in densely forested areas. A detailed and constantly updated inventory map of such phenomena, and the recognition of their topographic signatures is absolutely a key tool for landslide risk mitigation.The aim of this work is to test in forested areas, the performance of the new automatic and objective methodology developed by Tarolli et al. (2012) for geomorphic features extraction (landslide crowns) from high resolution topography (LiDAR derived Digital Terrain Models – DTMs). The methodology is based on the detection of landslides through the use of thresholds obtained by the statistical analysis of variability of landform curvature. The study was conducted in a high-risk area located in the central-south Taiwan, where an accurate field survey on landsliding processes and a high-quality set of airborne laser scanner elevation data are available. The area has been chosen because some of the deep-seated landslides are located near human infrastructures and their reactivation is highly dangerous. Thanks to LiDAR’s capability to detect the bare ground elevation data in forested areas, it was possible to recognize in detail landslide features also in remote regions difficult to access. The results, if compared with the previous work of Tarolli et al. (2012), mainly focused on shallow landslides, and in a not forested area, indicate that for deep-seated landslides, where the crowns are more evident, and they are present at large scale, the tested methodology performs better (higher quality index). The method can be used to interactively assist the interpreter/user on the task of deep-seated landslide hazard mapping, and risk assessment planning of such regions.  相似文献   

3.
Mapping of micro topography using airborne laser scanning   总被引:2,自引:1,他引:1  
Intense rainfall conditions and seismic activity commonly trigger fluidised landslides which are characterized by rapid movement and long run-out. They are potentially a very dangerous form of landslide phenomena and may result in extensive damage due to their sudden movement. Until now, photogrammetry has been used to produce maps and investigate such landslides in areas where these disasters occur. Recently, however, airborne laser scanning technology has become a promising technique for making topographical maps and investigating the micro topographic details of these landslide disasters, particularly on slopes around urban areas where the potential risk is high. In this study, airborne laser scanning was carried out in the Tama Hills, near Tokyo, Japan, which is extensively affected by this type of landsliding. The effectiveness of this technique was tested and compared with a laser contour map and aerial photograph interpretations.  相似文献   

4.
Use of LIDAR in landslide investigations: a review   总被引:13,自引:0,他引:13  
This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDAR-derived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed.  相似文献   

5.
Monitoring landslides with terrestrial laser scanning (TLS) is currently a well-known technique. One problem often encountered is the vegetation that produces shadow areas on the scans. Indeed, the points behind a given obstacle are hidden and thus occluded on the point cloud. Thereby, locations monitored with terrestrial laser scanner are mostly rock instabilities and few vegetated landslides, being difficult or even impossible to survey vegetated slopes using this method with its classical non-full wave form. The Peney landslide (Geneva, Switzerland) is partially vegetated by bushes and trees, and in order to monitor its displacements during the drawdown of the Verbois reservoir located at its base, an alternative solution has been found. We combined LiDAR technique with 14 targets made of polystyrene placed at different locations inside and outside the landslide area. The obtained displacements were compared with classical measurement methods (total station and extensometer), showing good resemblance of results, indicating that the use of targets in highly vegetated areas could be an efficient alternative for mass movements monitoring.  相似文献   

6.

Landslide susceptibility analysis based on the strong ability of data mining of Geographic Information System (GIS) has become a hot topic in international landslide research. This paper used optimized decision tree and GIS databases to analyze the sensitivity in the northwest mountain areas of Yunnan province of China, and then discussed the formation mechanism of the landslide happened in the area. The translational landslide located in the area with an average gradient less than or equal to 28.7° was reclassified as a higher level 3 sensitive area than before according to the normalized different fault index (NDFI). The results showed that the data mining based on GIS 3D space–time information database can help to find the unique topography, geology hydrology and the other typical spatial information of some special typed of landslides such as translational landslides, thus it can illustrate the relationship between the landslides and their sensitivity factors. The improved landslide susceptibility analysis will provide a new method for identifying the genetic mechanism of landslide, and play an important role in the government regional planning and disaster prevention measures.

  相似文献   

7.
Garhwal Himalayas are seismically very active and simultaneously suffering from landslide hazards. Landslides are one of the most frequent natural hazards in Himalayas causing damages worth more than one billion US$ and around 200 deaths every year. Thus, it is of paramount importance to identify the landslide causative factors to study them carefully and rank them as per their influence on the occurrence of landslides. The difference image of GIS-derived landslide susceptibility zonation maps prepared for pre- and post-Chamoli earthquake shows the effect of seismic shaking on the occurrence of landslides in the Garhwal Himalaya. An attempt has been made to incorporate seismic shaking parameters in terms of peak ground acceleration with other static landslide causative factors to produce landslide susceptibility zonation map in geographic information system environment. In this paper, probabilistic seismic hazard analysis has been carried out to calculate peak ground acceleration values at different time periods for estimating seismic shaking conditions in the study area. Further, these values are used as one of the causative factors of landslides in the study area and it is observed that it refines the preparation of landslide susceptibility zonation map in seismically active areas like Garhwal Himalayas.  相似文献   

8.
Within the SLAM project (Service for Landslide Monitoring), launched in 2003 by the European Space Agency (ESA) the Permanent Scatterers (PS) technique, a multi-image interferometric approach, coupled with the interpretation of aerial-photos and optical satellite images, was carried out for landslide investigations. The PS analysis was applied at a regional scale as support for landslide inventory mapping and at local scale for the monitoring of single well-known slope movements. For the integration of the PS measurements within a landslide inventory the Arno river basin (Italy) was chosen as test site for the presence of a high number of mass movements (to date about 300 areas at high landslide risk and more than 27,000 individual landslides mapped by the institutional authorities). About 350 SAR images have been interferometrically processed by means of the PS technique, with the detection of about 600,000 PS. The use of optical images contributed spatial meaning to the point-wise information provided by the PS, making it easier to identify terrain features related to slope instability and the landslide boundaries. Here we describe the employed methodology and its impact in the updating of a preexisting landslide inventory. 6.8% of the total number of landslides were characterized by ground displacement measurements from the PS: 6.1% of already mapped landslides and 0.8% of new unstable areas detected through the PS analysis. Moreover, most of the PS are located in urban areas, showing that the proposed methodology is suitable for landslide mapping in areas with a quite high density of urbanization, but that over vegetated areas it still suffers from the limitations induced by the current space-borne SAR missions (e.g. temporal de-correlation). On the other hand, the use of InSAR for the monitoring of single slow landslides threatening built-up areas has provided satisfactory results, allowing the measurement of superficial deformations with high accuracy on the landslide sectors characterized by a good radar reflectivity and coherence.  相似文献   

9.
《Engineering Geology》2007,89(3-4):200-217
Within the SLAM project (Service for Landslide Monitoring), launched in 2003 by the European Space Agency (ESA) the Permanent Scatterers (PS) technique, a multi-image interferometric approach, coupled with the interpretation of aerial-photos and optical satellite images, was carried out for landslide investigations. The PS analysis was applied at a regional scale as support for landslide inventory mapping and at local scale for the monitoring of single well-known slope movements. For the integration of the PS measurements within a landslide inventory the Arno river basin (Italy) was chosen as test site for the presence of a high number of mass movements (to date about 300 areas at high landslide risk and more than 27,000 individual landslides mapped by the institutional authorities). About 350 SAR images have been interferometrically processed by means of the PS technique, with the detection of about 600,000 PS. The use of optical images contributed spatial meaning to the point-wise information provided by the PS, making it easier to identify terrain features related to slope instability and the landslide boundaries. Here we describe the employed methodology and its impact in the updating of a preexisting landslide inventory. 6.8% of the total number of landslides were characterized by ground displacement measurements from the PS: 6.1% of already mapped landslides and 0.8% of new unstable areas detected through the PS analysis. Moreover, most of the PS are located in urban areas, showing that the proposed methodology is suitable for landslide mapping in areas with a quite high density of urbanization, but that over vegetated areas it still suffers from the limitations induced by the current space-borne SAR missions (e.g. temporal de-correlation). On the other hand, the use of InSAR for the monitoring of single slow landslides threatening built-up areas has provided satisfactory results, allowing the measurement of superficial deformations with high accuracy on the landslide sectors characterized by a good radar reflectivity and coherence.  相似文献   

10.
《Engineering Geology》2007,89(1-2):67-87
Light detection and ranging (LIDAR) data were used to visually map landslides, headscarps, and denuded slopes in Seattle, Washington. Four times more landslides were mapped than by previous efforts that used aerial photographs. The mapped landforms (landslides, headscarps, and denuded slopes) were created by many individual landslides. The spatial distribution of mapped landforms and 1308 historical landslides show that historical landslide activity has been concentrated on the mapped landforms, and that most of the landslide activity that created the landforms was prehistoric. Thus, the spatial densities of historical landslides on the landforms provide approximations of the landforms' relative susceptibilities to future landsliding. Historical landslide characteristics appear to be closely related to landform type so relative susceptibilities were determined for landslides with various characteristics. No strong relations were identified between stratigraphy and landslide occurrence; however, landslide characteristics and slope morphology appear to be related to stratigraphic conditions.Human activity is responsible for causing about 80% of historical Seattle landslides. The distribution of mapped landforms and human-caused landslides suggests the probable characteristics of future human-caused landslides on each of the landforms. The distribution of mapped landforms and historical landslides suggests that erosion of slope-toes by surface water has been a necessary condition for causing Seattle landslides. Human activity has largely arrested this erosion, which implies that landslide activity will decrease with time as hillsides naturally stabilize. However, evaluation of glacial-age analogs of areas of recent slope-toe erosion suggests that landslide activity in Seattle will continue for the foreseeable future.  相似文献   

11.
Very intensive rainfall in August 2005 (>300 mm/3 days) triggered moderately deep (2–10 m) landslides of about 50'000 m3 volume each in two mountain torrent catchments above the village of Brienz (Berner Oberland, Switzerland). These landslides – originating in Trachtbach and Glyssibach catchments – transformed into extremely rapid (>5 m/s) debris flows, which caused significant damage in inhabited areas; two persons lost their lives and about twenty-five families became homeless. The Brienz case was the most damaging one among many landslide disasters occurring during those rainy days in the Swiss Alps. In this paper we study in detail the predisposition and causes of the 2005 landslides in the Brienz area, based on field mapping, analysis of high resolution images and digital terrain models, derived from LIDAR and infrared measurements taken before and after the event. The features of these landslides are compared with past and dormant landslides in the mid-slope portion of the mountain chain north of Brienz, which has been the source of many catastrophic mass wasting events during the last centuries. Detailed field mapping shows that highly weathered series of strongly overconsolidated Mesozoic marls (Diphyoides Limestone & Vitznau Marls of Valanginian age) and their residual soils form the primary source for the sliding materials. The rupture surfaces of the moderately deep landslides often run at the transition from saprolite to weathered bedrock, with a dip angle of about 40o in the landslide depletion area. These landslides transform into debris flows, where debris slides into strongly convergent hillslopes or directly into headwater channels.  相似文献   

12.
Heavy rainfall triggered landslides are on the rise along the Western Ghats making it a matter of priority to identify landslide-prone areas well in advance. The present effort is aimed at identifying landslide susceptible villages (LSV) around the Kalsubai region of Deccan volcanic province (DVP), Maharashtra, India from 8 weighted landslide parameters- rainfall, slope, lithology, land use and land cover (LULC), soil properties, relative relief, aspect and lineament. These parameters were combined with advanced remote sensing (RS) data and processed in geographical information system (GIS) as well as in image processing software, which are an integral part of geospatial techniques. Out of the total 59 villages, the study identified 9 villages are situated in very high, 13 in high, 12 in moderate, 11 in low and 14 in very low risk zones. Our data reveals incessant heavy rains and steep slopes are the dominant factors in triggering landslides, exacerbated by anthropogenic activity prevalent in the study area. The spatial and non-spatial database created will help to take effective steps in preventing and/or mitigating landslide disasters in the study area. The methodology can be applied to identify other landslide prone areas in a cost effective way.  相似文献   

13.
明确滑坡每次活动准确的年代对于揭示一个地区滑坡在时间上的活动规律,进而评价该地区的滑坡灾害风险至关重要.本文对宇宙成因核素(TCN)、光释光(OSL)和14C等古滑坡测年方法研究的现状和成果进行了总结,简要介绍了不同的古滑坡测年方法,重点阐释了滑坡体、次生沉积物、滑动面、滑坡塘、滑坡后壁、滑床以及滑坡伴生堰塞湖等不同的...  相似文献   

14.
刘沛源  常鸣  武彬彬  罗超鹏  周超 《地球科学》2022,47(6):2048-2057
西南山区地质构造复杂导致大量的滑坡分布.为了科学有效的指导西南山区道路选线,提前规避地质灾害高风险,滑坡灾害早期识别必不可少.合成孔径雷达干涉测量(interferometric synthetic aperture radar,InSAR)技术因其全天候、多时相等特点被广泛应用于滑坡灾害的早期识别中.收集了87景Sentinel-1A降轨数据,利用差分干涉测量短基线集时序分析(small baseline subset interferometric synthetic aperture radar,SBAS-InSAR)技术对成汶高速路汶川段进行形变区的识别与分析,结果显示共识别出10处,经野外复核均为处于持续变形中的滑坡,有较好的一致性.根据早期识别结果,对3个比选方案进行综合对比分析,确定方案B为最优选择.SBAS-InSAR技术能有效识别山区公路潜在滑坡隐患区,为山区公路的准确选线提供科学依据.   相似文献   

15.
宁夏隆德县地处六盘山西麓,地质条件复杂,受季节性强降雨影响,滑坡地质灾害频发,给当地人民生命财产安全造成了严重威胁。针对宁夏东部和南部植被覆盖率高的特点,文章利用合成孔径雷达升降轨差分干涉测量(Synthetic Aperture Radar Difference Interferometry, D-InSAR)技术与高分辨率光学遥感相结合,对隆德县展开滑坡隐患早期识别与探测研究。首先通过干涉叠加技术(Stacking)分别获得2019年1月—2020年5月隆德县升轨和降轨方向的雷达视向形变速率,然后结合高分辨率光学遥感影像产品和数字高程模型(DEM),基于专家判识经验建立适用于该研究区的滑坡隐患形态和变形解译标志,完成全县范围的滑坡隐患综合遥感识别和地面调查工作。本次遥感调查工作共识别滑坡隐患47处,野外调查验证21处,其中核实16处,准确率为71.4%。实地调查结果验证了综合遥感识别与探测技术在宁夏南部地质灾害隐患遥感调查的适用性和可行性,同时也验证了识别结果的准确性,为宁夏南部地区滑坡防治和突发地质灾害应急提供了重要的科学依据。  相似文献   

16.
近年来,高山峡谷区滑坡灾害频频发生,给人民生命和财产安全带来严重威胁。针对多数学者利用SAR单轨道数据对高山峡谷区滑坡进行早期识别,存在SAR成像几何畸变造成部分滑坡不能识别、识别结果不全面等问题。为全面准确的对高山峡谷区滑坡隐患进行早期识别,文章采用SBAS-InSAR技术,以东川小江沿线两侧深切割高山峡谷区为研究区,通过升降轨SAR数据结合互补的方式进行滑坡灾害隐患识别,引入高分辨率光学影像等作为辅助识别,最终共识别出18处滑坡灾害体,其中5处为高风险潜在滑坡,并对三类典型潜在滑坡进行分析。分析结果表明:利用升降轨SAR数据结合互补的方式,能有效避免SAR单轨道数据在高山峡谷地区产生的几何畸变问题,同时,该方法能更为准确全面地对高山峡谷区滑坡隐患进行早期识别,为防灾减灾事业及政府部门决策提供一种有效的手段。  相似文献   

17.
晚更新世以来,特别是全新世以来,黄土高原西北部发育了多期次的滑坡事件。临夏盆地巴谢河流域较好地保留了多期次滑坡的遗存,有研究历史滑坡发育规律的良好素材。文章通过详细的野外调查,初步厘清了滑坡空间分布及新老滑坡相互叠置关系,总结得到本地区滑坡的四种发展类型:压裂型深层黄土-泥岩滑坡、滑移型深层黄土-泥岩滑坡、蠕变型中浅层黄土-泥岩滑坡和塌滑型黄土滑坡。不同时期发育的滑坡在野外呈现明显不同的特征:发育于晚更新世的古滑坡有圈椅状的地形和高陡的后缘陡壁,滑坡堆积体已固结,堆积体表面冲沟发育;发育于全新世早期的老滑坡除了具有圈椅状地形和高陡后壁外,堆积体较为松散,堆积平台形态较为完整;发育于全新世晚期的新滑坡则保留了更多的滑坡特征,可见滑坡后缘和侧缘裂缝。巴谢河流域滑坡大多有多次滑动的迹象,不同期次的滑坡相互重叠,在同一范围发生多次滑动,形成多级滑坡堆积平台。滑坡埋压动植物、滑坡洼地短期水体沉积物等有着明显的滑坡指示意义。通过采集此类样品,利用14C和光释光等测年手段,获取了本地区一系列滑坡事件的年龄。对测年数据进行统计分析,得到巴谢河流域晚更新世以来的五个滑坡高发时段,分别为100~63 kaBP、45.2~41.5 kaBP、33.3~28.2 kaBP、22.5~15.2 kaBP和10.4~0.2 kaBP。以上滑坡高发时段的推断将为认识去环境变迁提供证据。  相似文献   

18.
Recent studies on flow-type landslides in pyroclastic deposits have been performed to identify potential source areas and the main depositional mechanisms. Interesting methods for mapping landslide susceptibility have also been proposed. Since the potential volume of flow-type landslides is a measure of event magnitude, hence of considerable use in hazard assessment, we propose a method to estimate the potential volume for the morphometric analysis of 213 flow-like landslides occurred in Campania in recent centuries. First, our data show that the height, H, of the detachment and erosion-transport zones (i.e. the difference in height between the top of source area and a point, the first break at the foot of the slope, where the deposition stars to take place and the landslide loses velocity) and the area, A f, of the same zones are linked by a mathematical function. Secondly, only part of the entire thickness of the pyroclastic material on the slope is involved. To define the potential volumes of the flow-type landslides, we analysed slopes, both in volcanic and carbonatic contexts, considering both channelled and unchannelled flow-type landslides. The most susceptible areas are identified by using a landslide-triggering susceptibility map, and then in each case the height H was estimated. This height is the difference in level between the point on the slope with highest susceptibility and the first break at the foot of the slope. Using the statistical correlation between H and A f, both calculated for historical landslides, we evaluate the area of a potential landslide on a slope. Finally, potential volumes are calculated by using A f and a constant thickness of the pyroclastic cover for the whole slope. This method could represent a useful tool to detect the main areas where risk mitigation works are required.  相似文献   

19.
雅鲁藏布江缝合带加查-朗县段位于青藏高原东南部地区,地形起伏度大,地质灾害分布密集。本文主要基于机载雷达获取的10 m精度影像数据,卫星遥感数据,以及高精度无人机航拍数据,对崩塌、滑坡地质灾害进行识别,并研究其主控因素。共计识别41处崩塌与92处滑坡,利用统计方法,分析崩塌、滑坡与各主控因素的相关性。对于识别的崩塌滑坡进行厚度识别,从而建立了灾害面积与体积之间的函数关系,实现了在已知崩塌滑坡灾害面积的情况下,对灾害规模的估算。本文阐明了区内地质灾害的空间分布情况,并研究了区域内崩塌滑坡地质灾害的主控因素。结果表明:滑坡主要发育在雅鲁藏布江南岸以及北岸坡体的中下部,而崩塌主要发生在北岸坡体的中上部。地层岩性、地形地貌、地质构造和岩体结构是崩塌、滑坡的主控因素,崩塌主要集中在砾岩和花岗岩地区,而千枚岩地区多发育有滑坡灾害。研究区内的崩塌由坡度、坡向和高程共同控制,其中坡度为主控因素;滑坡主要受到断层的控制,坡度对滑坡的发育具有一定的影响作用,高程和坡向对滑坡的影响较小。滑坡主要以牵引型为主,且大多数滑坡滑动的方向大致垂直于断裂的走向;崩塌主要以滑移式为主,通过对岩体结构面的提取可以分析其结构面发育情况,从而分析结构面对崩塌的控制作用。  相似文献   

20.
Landslide hazard in a region limited to data from a regional scale about triggering factors is assessed via cross tabulation between determining factors and landslides with recent activity. Firstly, landslide susceptibility was evaluated and validated through a bivariate statistical method between the previously identified stability conditioning factors and the mapped landslides. In this way, the most susceptible areas for assessing landslide hazards were selected. The main problem to solve in this type of research is the landslide activity. For this purpose, several techniques were applied: news reports, differential interferometric synthetic aperture radar, digital photogrammetry, light detection and ranging, photointerpretation, and dendrochronology. Both the strong and weak points of these techniques are also mentioned. The landslide return period was computed via the association between landslide activity and triggering factors, in this case annual rainfall. Finally, landslide hazard was mapped solely based on landslides with recent activity and their computed return period. The relationship between landslide occurrence and triggering factors shows that, according to both the considered assumptions and the observations made, deep-seated landslides are triggered or reactivated together with superficial landslides once every 18 years, while superficial landslides as flows or falls occur once every 5 years. The results show that there is generally a low landslide hazard in the study zone, especially when compared to landslide susceptibility. This means that landslides are mainly dormant from a natural evolution point of view, but could be reactivated as a result of geomorphological, climate, or human changes. In any case, the landslide hazard is successfully assessed, with a prediction of a 6% annual probability of a high hazard in 5% of the area, intersecting with the main infrastructures of the region; thus, control strategies are justified in order to avoid damage in extraordinary rainfall periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号