首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
2010年玉树7.1级地震诱发滑坡特征及其地震地质意义   总被引:3,自引:0,他引:3  
2010年玉树7.1级地震造成了一系列次生地质灾害。笔者在玉树灾区地震地质灾害调查基础上,结合Quickbird高分辨率遥感影像数据和航片影像数据,以目视解译为主,共提取了542处地震滑坡,并首次发现了11处古地震滑坡。调查研究结果显示,玉树地震滑坡主要包括崩塌、狭义的滑坡和土溜等三种类型。其中地震崩塌占到了90%以上,按其物质成分可进一步划分为碎屑型崩塌、碎屑流型崩塌和岩崩等三类。地震滑坡的空间展布特征显示,该区80%以上的地震滑坡集中分布在以玉树活动断层为轴的长约95km、两侧宽2km的廊带区内,并与发震断层距离和宏观震中有很好的相关性,其高密度区与同震地表破裂的空间分段性也有很好的对应关系,体现出典型的走滑型发震断层的控灾特点。同时,还进一步分析了山体坡度、坡体形态、临空面高度和地层岩石与岩体完整度等因素对地震滑坡总体分布的影响。对古地震滑坡的初步研究发现,古地震滑坡的规模、期次和分布特征间接地反映出玉树断裂带在全新世期间曾发生过多次震级强度明显大于本次玉树7.1级地震的古地震事件,这为更深入探索玉树断裂带古地震事件提供了另一种重要的研究途径。此外,地震滑坡分布与地表破裂和极震区破坏程度之间的密切空间关系指示,地震滑坡也可以成为快速圈定宏观震中以及开展极震区地震烈度评价等方面的重要指标。  相似文献   

3.
玉树地震序列重新定位及其地震构造研究   总被引:3,自引:0,他引:3  
对玉树地震序列自2010年4月11日至9月15日由台网记录到的1 832个地震采用双差地震定位法进行重新定位,获得了1 670个地震重新定位的震源参数。重新定位后的震源深度主要分布在15 km以内。重新定位后的Ms 7.1级主震发生在无地表破裂段,余震活动向两侧破裂扩展。余震沿地表破裂带基本呈线性分布,剖面上显示为近垂直的结构面,在北西端无地表破裂出露处,出现近垂直于断裂方向较宽的北东向地震密集带。震源机制解显示的主压应力方向斜交地表破裂带,地表破裂与震源破裂都表现为纯左旋走滑的错动性质,而在北西端主压应力方向偏转为近垂直于断裂带的方向,此处较宽的北东向地震密集带可能由近东西与南北两个方向的共轭破裂所组成。余震的后期活动与发展并不局限于主震形成的破裂带内,更多的受局部应力调整被触发而产生新的破裂。  相似文献   

4.
Chong Xu  Xiwei Xu 《Natural Hazards》2014,72(2):871-893
The April 14, 2010 Yushu, China, earthquake (Mw 6.9) triggered a great number of landslides. At least 2,036 co-seismic landslides, with a total coverage area of 1.194 km2, were delineated by visual interpretation of aerial photographs and satellite images taken following the earthquake, and verified by field inspection. Based on the mapping results, a statistical analysis of the spatial distribution of these landslides is performed using the landslide area percentage (LAP), defined as the percentage of the area affected by the landslides, and landslide number density (LND), defined as the number of landslides per square kilometer. The purpose is to clarify how the landslides correlate the control factors, which are the elevation, slope angle, slope aspect, slope position, distance from drainages, lithology, distance from the surface rupture, and peak ground acceleration (PGA). The results show that both LAP and LND have strongly positive correlations with slope angle and negative correlations with distance from the surface rupture and distance from drainages. The highest LAP and LPD values are in places of elevations from 3,800 to 4,000 m. The slopes producing landslides are mostly facing toward NE, E, and SE. The geological units of Q4 al-pl, N, and T3 kn 1 have the highest concentrations of co-seismic landslides. No apparent correlations are present between LAP and LND values and PGA. On both sides of the surface rupture, the landslide distributions are almost similar except a few exceptions, likely associated with the nature of the strike-slip seismogenic fault for this event. The bivariate statistical analysis shows that, in descending order, the earthquake-triggered landslide impact factors are distance from surface rupture > slope angle > distance from drainages > lithology > PGA. Besides, as the detailed co-seismic landslides inventories related to strike-slip earthquakes are still few compared with that of thrusting-fault earthquakes, this case study would shed new light on the subject. For instance, the landslide spatial distribution on both sides of the strike-slip seismogenic fault is rather different from that of thrusting-fault earthquakes. It reminds us to take different strategies of measures for prevention and mitigation of landslides induced by earthquakes with different mechanisms.  相似文献   

5.
In recent years, earthquake-triggered landslides have attracted much attention in the scientific community as a main form of seismic ground response. However, little work has been performed concerning the volume and gravitational potential energy reduction of earthquake-triggered landslides and their severe effect on landscape change. This paper presents a quantitative study on the volume, gravitational potential energy reduction, and change in landscape related to landslides triggered by the 14 April 2010 Yushu earthquake. At least 2,036 landslides were triggered by the earthquake. A total landslide scar area of 1.194 km2 was delineated from the visual interpretation of aerial photographs and satellite images and was supported by selected field checking. In this paper, we focus on possible answers to the following five questions: (1) What is the total volume of the 2,036 landslides triggered by the earthquake, and what is the average landslide erosion thickness in the earthquake-stricken area? (2) What are the elevations of all landslide materials in relation to pre- and post-landsliding? (3) How much was the gravitational potential energy reduced due to the sliding of these landslide materials? (4) What is the average elevation change caused by these landslides in the study area? (5) What is the vertical change of the regional centroid position above sea level, as induced by these landslides? It is concluded that the total volume of the 2,036 landslides is 2.9399?×?106 m3. The landslide erosion thickness throughout the study area is 2.02 mm. The materials of these landslides moved from an elevation of 4,145.243 to 4,104.697 m, resulting in a decreased distance of 40.546 m. The gravitational potential energy reduction related to the landslides triggered by the earthquake was 2.9213?×?1012 J. The average regional elevation of the study area is 4,427.160 m, a value consistent with the assumption that the accumulated materials were remained in situ. This value changes from 4,427.160 to 4,427.158 m with all landslide materials moved out of the study area, resulting in a reduction in elevation of 2 mm. Based on the assumption that all landslide materials moved out of the study area, the elevations of the centroid of the study area’s crust changed from 2,222.45967 to 2,222.45867 m, which means the centroid value decreased by 1 mm. This value is 0.001 mm when assuming that the materials were remained in situ, which is almost negligible, compared with the situation of “all landslide materials moved out of the study area.”  相似文献   

6.
吴富峣    李海兵    潘家伟    李宁  郭瑞强    张伟   《地质通报》2011,30(04):612-623
野外调查发现,2010年4月14日青海玉树Ms7.1级地震同震地表破裂带长约65km,破裂带走向为310°,破裂面向NE陡倾,地表破裂带由2部分组成,其中西侧部分长约19km,东侧部分长约30km,两者之间存在约15km的无破裂区。地表破裂以右阶雁行状破裂分布为主要特征,呈现左旋走滑性质,伴随有垂直位移。统计结果显示,同震地表破裂垂直位移 (dv)与水平位移 (dh)的比值在0.13~0.53之间,地貌累积dv与累积dh比值为0.27~0.63。同震dv/dh与地貌dv/dh的相似显示玉树南山的形成和玉树地震具有同样的运动学和动力学性质,玉树南山的形成是地质历史上沿玉树断裂多次类似于玉树地震的地震活动的结果,计算出需要1800~2600次地震才能造成玉树南山的隆升。前人研究本段断层地震复发周期为120~200年,计算出断层开始活动时间不晚于20万~40万年以前。  相似文献   

7.
野外调查发现,2010年4月14日青海玉树Ms7.1级地震同震地表破裂带长约65km,破裂带走向为310°,破裂面向NE陡倾,地表破裂带由2部分组成,其中西侧部分长约19km,东侧部分长约30km,两者之间存在约15km的无破裂区。地表破裂以右阶雁行状破裂分布为主要特征,呈现左旋走滑性质,伴随有垂直位移。统计结果显示,同震地表破裂垂直位移 (dv)与水平位移 (dh)的比值在0.13~0.53之间,地貌累积dv与累积dh比值为0.27~0.63。同震dv/dh与地貌dv/dh的相似显示玉树南山的形成和玉树地震具有同样的运动学和动力学性质,玉树南山的形成是地质历史上沿玉树断裂多次类似于玉树地震的地震活动的结果,计算出需要1800~2600次地震才能造成玉树南山的隆升。前人研究本段断层地震复发周期为120~200年,计算出断层开始活动时间不晚于20万~40万年以前。  相似文献   

8.
潘家伟  李海兵  吴富峣  李宁  郭瑞强  张伟 《岩石学报》2011,27(11):3449-3459
2010年4月14日,青海省玉树地区发生Ms7.1级地震,造成大量人员伤亡和财产损失.地震发生后,我们对地震地表破裂带进行了详细的考察,并对同震位移量进行了精确的测量.根据野外考察和测量的结果,对玉树地震的地表破裂特征、同震位移量及其分布特征进行了分析,并对地震的破裂机制和破裂过程进行了探讨,取得如下认识:(1)玉树地震形成了沿鲜水河断裂带西北段(甘孜-玉树断裂)分布的东、西两条地表破裂带,西段破裂带分布在微观震中附近的隆宝湖拉分盆地中,长约19km;东段破裂带沿扎曲河南岸及巴塘河西岸山坡展布,长度约31km;上述两条破裂带之间存在约15km的地表破裂空区;(2)野外测量获得玉树地震的最大同震位移量为2.3m,位于东段地表破裂带中部郭央烟宋多附近;(3)地表破裂和野外构造地貌特征均反映了发震断层处于走滑伸展环境,断层左旋走滑过程中伴随正断作用;(4)地震波反演结果和地表破裂分布特征表明,玉树地震的破裂过程包括两次子事件,分别在地表形成了隆宝湖破裂带和扎曲河、巴塘河破裂带,隆宝湖及玉树县城西侧的山间谷地是在甘孜-玉树断裂长期活动的破裂带阶区转换拉张过程中形成的两个拉分盆地.  相似文献   

9.
10.
分析了青海玉树Ms7.1级地震中形成的同震地表破裂分布与构造特征。本次地震造成的地表破裂长达46km,地震造成240cm的最大相对水平走滑错动量,最大垂直错动量60cm。地表破裂所经之处可看到原有断层新近活动的明显迹线。依次分析了按空间尺度划分的4个层次破裂的走向变化、同级破裂排列、破裂末端变化等构造特征。Ⅰ级破裂作为本次地震产生的整个破裂带,总体走向119°,由3段自然分开、左阶斜列的Ⅱ级破裂组成。3段Ⅱ级破裂自NW向SE依次为隆宝镇段、结古镇段和禅古寺段,破裂性质总体以左旋走滑为主,各段略有不同。各Ⅱ级破裂带内部,分别由若干Ⅲ级破裂段落组成,总体呈现右阶斜列排列模式。Ⅲ级破裂本身由一系列简单的Ⅳ级破裂雁列或羽列右阶斜列构成。不同层次的地表破裂具有简单剪切构造带的变形特征,共识别出R、R’、Y、T和P五组基本破裂面。其初始破裂面展布特征可以用库伦破裂准则来解释,其中岩土体材料的内摩擦角大致为26~44°。各级破裂端部出现分叉、转向及逐渐消失等变形特征。  相似文献   

11.
分析了青海玉树Ms7.1级地震中形成的同震地表破裂分布与构造特征。本次地震造成的地表破裂长达46km,地震造成240cm的最大相对水平走滑错动量,最大垂直错动量60cm。地表破裂所经之处可看到原有断层新近活动的明显迹线。依次分析了按空间尺度划分的4个层次破裂的走向变化、同级破裂排列、破裂末端变化等构造特征。Ⅰ级破裂作为本次地震产生的整个破裂带,总体走向119°,由3段自然分开、左阶斜列的Ⅱ级破裂组成。3段Ⅱ级破裂自NW向SE依次为隆宝镇段、结古镇段和禅古寺段,破裂性质总体以左旋走滑为主,各段略有不同。各Ⅱ级破裂带内部,分别由若干Ⅲ级破裂段落组成,总体呈现右阶斜列排列模式。Ⅲ级破裂本身由一系列简单的Ⅳ级破裂雁列或羽列右阶斜列构成。不同层次的地表破裂具有简单剪切构造带的变形特征,共识别出R、R’、Y、T和P五组基本破裂面。其初始破裂面展布特征可以用库伦破裂准则来解释,其中岩土体材料的内摩擦角大致为26~44°。各级破裂端部出现分叉、转向及逐渐消失等变形特征。  相似文献   

12.
13.
The Ms 8.0 Wenchuan earthquake of May 12, 2008 is one of the most disastrous earthquakes in China. The earthquake triggered tens of thousands of landslides over a broad area, including shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches, some of which buried large sections of some towns and dammed the rivers. The purpose of this study is to investigate correlations between the occurrence of landslides with geologic and geomorphologic conditions, and seismic parameters. Over 56,000 earthquake-triggered landslides, with a total area of 811 km2, are interpreted using aerial photographs and remote sensing images taken following the earthquake. The spatial distribution of these landslides is analyzed statistically using both landslide-point density (LPD), defined as the number of landslides per square kilometer, and landslide-area density (LAD), the percentage of the area affected by landslides, to determine how the occurrence of landslides correlates with distance from the epicenter, distance from the major surface rupture, seismic intensity and peak ground acceleration (PGA), slope angle, slope aspect, elevation, and lithology. It is found that both LAD and LPD have strong positive correlations with slope steepness, distance from the major surface rupture and seismic intensity, and that Pre-Sinian schist, and Cambrian sandstone and siltstone intercalated with slate have the most concentrated landslide activities, followed by the Permian limestone intercalated with shale, and Devonian limestone. Statistical analyses also indicate that the major surface rupture has influence on the spatial distribution of landslides, because LAD and LPD are relatively higher on the hanging wall than on the footwall. However, the correlation between the occurrence of landslides with distance from the epicenter of the earthquake is complicated, rather than a relatively simple negative correlation as found from other reported cases of earthquakes. This is possibly due to complicated rupture processes of the earthquake.  相似文献   

14.
Landslides triggered by the 2016 Mj 7.3 Kumamoto,Japan, earthquake   总被引:2,自引:0,他引:2  
The aim of this study is to establish a detailed and complete inventory of the landslides triggered by the Mj 7.3 (Mw 7.0) Kumamoto, Japan, earthquake sequence of 15 April 2016 (16 April in JST). Based on high-resolution (0.5–2 m) optical satellite images, we delineated 3,467 individual landslides triggered by the earthquake, occupying an area of about 6.9 km2. Then they were validated by aerial photographs with very high-resolution (better than 0.5 m) and oblique field photos. Of them, 3,460 landslides are distributed in an elliptical area about 6000 km2, with a NE-SW directed 120-km-long long axis and a 60-km-long NW-SE trending short axis. Most of the landslides are shallow, disrupted falls and slides, with a few flow-type slides and rock and soil avalanches. The analysis of correlation between the landslides and several control factors shows the areas of elevation 1000–1200 m, stratum of Q3-Hvf, seismic intensity VIII and VIII+, and peak ground acceleration (PGA) 0.4–0.6 g register the highest landslide abundance. This study also discussed the relationship between the spatial pattern of the landslides and the seismotectonic structure featured by a strike-slip fault with a normal component and the volcanism in the study area.  相似文献   

15.
四川汶川Ms 8 级地震触发的典型滑坡的风险指标反演   总被引:2,自引:0,他引:2  
2008年汶川大地震触发了数以万计的崩塌和滑坡,特别是沿发震断裂分布一系列大型的高速远程滑坡。为了探索地震诱发大型高速远程滑坡运动速度的反演方法,以汶川大地震典型高速远程滑坡为例,在野外调查和室内分析的基础上,结合前人的研究成果,对沿映秀-北川断裂展布的5个典型滑坡的速度进行了反演和计算。结果表明,5个滑坡的最大速度均大于50m/s,其中大光包滑坡速度最大,其下部滑体的最大速度约为300m/s,上部滑体凌空飞行的初速度高达165.6 m/s。同时,对上述滑坡的视摩擦系数进行了计算,4个滑坡的视摩擦系数介于0.16~0.4之间。这一研究的目的在于为类似地区地震滑坡的速度、最大位移量的预测和风险评估提供基础数据,对于类似地区的防灾减灾具有一定的参考价值。  相似文献   

16.
2008年汶川大地震触发了数以万计的崩塌和滑坡,特别是沿发震断裂分布一系列大型的高速远程滑坡。为了探索地震诱发大型高速远程滑坡运动速度的反演方法,以汶川大地震典型高速远程滑坡为例,在野外调查和室内分析的基础上,结合前人的研究成果,对沿映秀-北川断裂展布的5个典型滑坡的速度进行了反演和计算。结果表明,5个滑坡的最大速度均大于50m/s,其中大光包滑坡速度最大,其下部滑体的最大速度约为300m/s,上部滑体凌空飞行的初速度高达165.6 m/s。同时,对上述滑坡的视摩擦系数进行了计算,4个滑坡的视摩擦系数介于0.16~0.4之间。这一研究的目的在于为类似地区地震滑坡的速度、最大位移量的预测和风险评估提供基础数据,对于类似地区的防灾减灾具有一定的参考价值。  相似文献   

17.
The Niumiangou Creek rock avalanche was triggered by an Ms 8.0 earthquake that happened on 12 May 2008 in the Sichuan Province, China. The rock avalanche traveled a horizontal distance of 3.0 km over a vertical elevation difference of 0.89 km, equivalent to a coefficient of friction of only 0.29. The travel path of the rock avalanche can be divided into three segments: (1) failing and disintegrating, (2) flying, (3) flowing. In the failing and disintegrating segment, the rock slope failed because of the coupled action of horizontal and vertical force of the earthquake, then smashed into the opposite mountain and disintegrated. In the flying segment, the disintegrating rock mass changed direction and flew into the Lianhuaxin Creek, which was different from the previous research results that concluded rock debris flowed in Lianhuaxin Creek. A great amount of air trapped and compressed under the rock debris acted as air cushion and supported the rock debris to fly a further distance. In the flowing segment, the rock debris flowed on the ground surface in Niumiangou Creek. The flowing velocity has been estimated from the maximum elevation and runup according to the damaged trimlines of the debris. The saturated fine material in Niumiangou Creek entrained by the failed debris mass is thought to have contributed to the long runout of the debris. The Niumiangou Creek rock avalanche is one of the three longest rock avalanches triggered by Wenchuan earthquake. The conclusions of the paper have implications for hazard assessment of potential rock avalanches in the earthquake area and the other similar mountainous area in west China.  相似文献   

18.
Earthquake-triggered landslides are a major geological hazard in Central Asia. In July 1949, the M7.4 Khait earthquake triggered many hundreds of landslides in a mountainous region near the southern limit of the Tien Shan Mountains, central Tajikistan. These landslides involved widespread rock-slope failure as well as large numbers of flowslides in loess that mantles the steep slopes of the region. In the Yasman valley hundreds of loess landslides coalesced to form a massive loess flow (est. vol. 245 Mm3) that travelled up to 20 km on a slope of only 2°. In an adjacent valley, the Khait landslide involved transformation of an earthquake-triggered rockslide into a very rapid flow by the entrainment of saturated loess into its movement. It travelled 7.41 km over a vertical distance of 1421 m with an estimated average velocity of ~30 m/s. We estimate its volume as 75 Mm3, an order of magnitude less that previously published estimates. The Khait landslide was simulated using DAN. The number of casualties due to earthquake-triggered landslides in the epicentral region was considerable. Approximately 4000 people were killed in the Yasman valley loess flow as 20 villages (kishlaks) were overwhelmed. In the Khait landslide alone we estimate ca. 800 people lost their lives when the villages of Khait and Khisorak were overrun by rapidly moving debris. Our data indicates that a total of approximately 7200 people were killed by earthquake-triggered landslides in the epicentral region of the Khait earthquake and that, in terms of loss of life, the 1949 Yasman valley loess flow was one of the most destructive landslides in recent history.  相似文献   

19.
20.
四川汶川Ms 8 级地震引发的滑坡与地层岩性、坡度的相关性   总被引:10,自引:0,他引:10  
姚鑫  许冲  戴福初  张永双 《地质通报》2009,28(8):1156-1162
震后遥感影像解译与调查结果表明,在大约48678km2的区域内,汶川Ms 8.0级地震诱发了不低于48000处滑坡灾害。基于GIS的空间分析方法,使用滑坡面积百分比(LAR)与滑坡密度(LC)2个参数,对地震滑坡的空间分布与地层岩性、坡度之间的关系进行统计分析。在整个研究区范围内,滑坡面积百分比约为1.4622%,滑坡密度约为0.9862个/km2。结果表明,滑坡多发生在坡度25~50°的区域内,滑坡易发性随着坡度的增加而升高。寒武纪地层中滑坡易发性最大,LAR约10%,LC约6.5个/km2,震旦系、奥陶系和侵入岩次之,这些地层和岩石对地震滑坡的发生均是敏感的。综合分析坡度、地层岩性与滑坡空间分布的关系,结果表明,在以较破碎岩石为主的地层中,滑坡多发生在坡度小于30°的部位;在以较坚硬岩石为主的地层中,滑坡多发生在坡度大于40°的部位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号